Solar luminosity variations in solar cycle 21 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-04

AUTHORS

Richard C. Willson, H. S. Hudson

ABSTRACT

The ACRIM I experiment (Active Cavity Radiometer Irradiance Monitor) on the solar maximum Mission (SMM) satellite has provided a nearly continuous record of solar total irradiance variations since early 19801. It has detected variations on time scales ranging from minutes to SMM's lifetime. The long-term variations have revealed a downward trend during the declining phase of solar cycle 21 (ref. 2) of the sunspot cycle, a flat period between mid-1985 and mid-1987, and an upturn in late 1987 which suggests a direct correlation of luminosity and solar active region population. If the upturn continues into the activity maximum of solar cycle 22, a relation between solar activity and luminosity of possible climatological significance could have been discovered. The sense of the correlation agrees with what has been predicted from the coincidence of the 'little ice age' climate anomaly in the sixteenth and seventeenth centuries and the Maunder Minimum of solar activity3. The best-fit relationship for the variation of total irradiance S, with sunspot number Rz, and 10–cm flux F10, are S=1,366.82+7.7l×10−3Rz and S=1,366.27+8.98×10−3 F10 (W m−2). These could be used to approximate total irradiance variations over the periods for which these indices have been compiled. More... »

PAGES

810-812

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/332810a0

DOI

http://dx.doi.org/10.1038/332810a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043127848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willson", 
        "givenName": "Richard C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Astrophysics and Space Science, University of California at San Diego, 92093, La Jolla, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Center for Astrophysics and Space Science, University of California at San Diego, 92093, La Jolla, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hudson", 
        "givenName": "H. S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00153425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028519725", 
          "https://doi.org/10.1007/bf00153425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01884410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035196186", 
          "https://doi.org/10.1007/bf01884410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00176830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025004930", 
          "https://doi.org/10.1007/bf00176830"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-04", 
    "datePublishedReg": "1988-04-01", 
    "description": "The ACRIM I experiment (Active Cavity Radiometer Irradiance Monitor) on the solar maximum Mission (SMM) satellite has provided a nearly continuous record of solar total irradiance variations since early 19801. It has detected variations on time scales ranging from minutes to SMM's lifetime. The long-term variations have revealed a downward trend during the declining phase of solar cycle 21 (ref. 2) of the sunspot cycle, a flat period between mid-1985 and mid-1987, and an upturn in late 1987 which suggests a direct correlation of luminosity and solar active region population. If the upturn continues into the activity maximum of solar cycle 22, a relation between solar activity and luminosity of possible climatological significance could have been discovered. The sense of the correlation agrees with what has been predicted from the coincidence of the 'little ice age' climate anomaly in the sixteenth and seventeenth centuries and the Maunder Minimum of solar activity3. The best-fit relationship for the variation of total irradiance S, with sunspot number Rz, and 10\u2013cm flux F10, are S=1,366.82+7.7l\u00d710\u22123Rz and S=1,366.27+8.98\u00d710\u22123 F10 (W m\u22122). These could be used to approximate total irradiance variations over the periods for which these indices have been compiled.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/332810a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6167", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "332"
      }
    ], 
    "keywords": [
      "solar cycle 21", 
      "total irradiance variations", 
      "Solar Maximum Mission satellite", 
      "cycle 21", 
      "solar cycle 22", 
      "solar luminosity variations", 
      "irradiance variations", 
      "ACRIM I", 
      "luminosity variations", 
      "solar activity", 
      "solar total irradiance variation", 
      "cycle 22", 
      "Mission satellite", 
      "sunspot number Rz", 
      "luminosity", 
      "sunspot cycle", 
      "activity maximum", 
      "Maunder Minimum", 
      "time scales", 
      "long-term variations", 
      "lifetime", 
      "upturn", 
      "climatological significance", 
      "coincidence", 
      "satellite", 
      "Rz", 
      "maximum", 
      "phase", 
      "direct correlation", 
      "minimum", 
      "variation", 
      "mid", 
      "correlation", 
      "continuous record", 
      "scale", 
      "anomalies", 
      "F10", 
      "index", 
      "relation", 
      "region's population", 
      "fit relationship", 
      "minutes", 
      "trends", 
      "cycle", 
      "period", 
      "sense", 
      "population", 
      "significance", 
      "relationship", 
      "activity", 
      "century", 
      "climate anomalies", 
      "seventeenth century", 
      "downward trend", 
      "records", 
      "activity3", 
      "flat periods"
    ], 
    "name": "Solar luminosity variations in solar cycle 21", 
    "pagination": "810-812", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043127848"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/332810a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/332810a0", 
      "https://app.dimensions.ai/details/publication/pub.1043127848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_205.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/332810a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/332810a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/332810a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/332810a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/332810a0'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      85 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/332810a0 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nc359afe9ddde4b9d823cdb56e382337c
4 schema:citation sg:pub.10.1007/bf00153425
5 sg:pub.10.1007/bf00176830
6 sg:pub.10.1007/bf01884410
7 schema:datePublished 1988-04
8 schema:datePublishedReg 1988-04-01
9 schema:description The ACRIM I experiment (Active Cavity Radiometer Irradiance Monitor) on the solar maximum Mission (SMM) satellite has provided a nearly continuous record of solar total irradiance variations since early 19801. It has detected variations on time scales ranging from minutes to SMM's lifetime. The long-term variations have revealed a downward trend during the declining phase of solar cycle 21 (ref. 2) of the sunspot cycle, a flat period between mid-1985 and mid-1987, and an upturn in late 1987 which suggests a direct correlation of luminosity and solar active region population. If the upturn continues into the activity maximum of solar cycle 22, a relation between solar activity and luminosity of possible climatological significance could have been discovered. The sense of the correlation agrees with what has been predicted from the coincidence of the 'little ice age' climate anomaly in the sixteenth and seventeenth centuries and the Maunder Minimum of solar activity3. The best-fit relationship for the variation of total irradiance S, with sunspot number Rz, and 10–cm flux F10, are S=1,366.82+7.7l×10−3Rz and S=1,366.27+8.98×10−3 F10 (W m−2). These could be used to approximate total irradiance variations over the periods for which these indices have been compiled.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N1b6517c653b64169b39cb7fe88b98404
13 Nc1b21116326e43e1bbae222c3e6f1717
14 sg:journal.1018957
15 schema:keywords ACRIM I
16 F10
17 Maunder Minimum
18 Mission satellite
19 Rz
20 Solar Maximum Mission satellite
21 activity
22 activity maximum
23 activity3
24 anomalies
25 century
26 climate anomalies
27 climatological significance
28 coincidence
29 continuous record
30 correlation
31 cycle
32 cycle 21
33 cycle 22
34 direct correlation
35 downward trend
36 fit relationship
37 flat periods
38 index
39 irradiance variations
40 lifetime
41 long-term variations
42 luminosity
43 luminosity variations
44 maximum
45 mid
46 minimum
47 minutes
48 period
49 phase
50 population
51 records
52 region's population
53 relation
54 relationship
55 satellite
56 scale
57 sense
58 seventeenth century
59 significance
60 solar activity
61 solar cycle 21
62 solar cycle 22
63 solar luminosity variations
64 solar total irradiance variation
65 sunspot cycle
66 sunspot number Rz
67 time scales
68 total irradiance variations
69 trends
70 upturn
71 variation
72 schema:name Solar luminosity variations in solar cycle 21
73 schema:pagination 810-812
74 schema:productId N33d3f2cd53c74fdfa79a09816de19886
75 N869d09204da44e1eac6cd5ae8b0a539b
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043127848
77 https://doi.org/10.1038/332810a0
78 schema:sdDatePublished 2022-12-01T06:19
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N0a3537b7e26549ceb6afa6d6e2643d6b
81 schema:url https://doi.org/10.1038/332810a0
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N0a3537b7e26549ceb6afa6d6e2643d6b schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N1b6517c653b64169b39cb7fe88b98404 schema:issueNumber 6167
88 rdf:type schema:PublicationIssue
89 N33d3f2cd53c74fdfa79a09816de19886 schema:name dimensions_id
90 schema:value pub.1043127848
91 rdf:type schema:PropertyValue
92 N40e9521dc60e4de581515f3c7b303eec schema:affiliation grid-institutes:grid.211367.0
93 schema:familyName Willson
94 schema:givenName Richard C.
95 rdf:type schema:Person
96 N869d09204da44e1eac6cd5ae8b0a539b schema:name doi
97 schema:value 10.1038/332810a0
98 rdf:type schema:PropertyValue
99 Nac41dc0c6e4d4e95801448d27e456d71 schema:affiliation grid-institutes:grid.266100.3
100 schema:familyName Hudson
101 schema:givenName H. S.
102 rdf:type schema:Person
103 Nc1b21116326e43e1bbae222c3e6f1717 schema:volumeNumber 332
104 rdf:type schema:PublicationVolume
105 Nc359afe9ddde4b9d823cdb56e382337c rdf:first N40e9521dc60e4de581515f3c7b303eec
106 rdf:rest Nc52190acfb0648b8b659f16f82bf0b58
107 Nc52190acfb0648b8b659f16f82bf0b58 rdf:first Nac41dc0c6e4d4e95801448d27e456d71
108 rdf:rest rdf:nil
109 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
110 schema:name Earth Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Geography and Environmental Geoscience
114 rdf:type schema:DefinedTerm
115 sg:journal.1018957 schema:issn 0028-0836
116 1476-4687
117 schema:name Nature
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:pub.10.1007/bf00153425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028519725
121 https://doi.org/10.1007/bf00153425
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf00176830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025004930
124 https://doi.org/10.1007/bf00176830
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01884410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035196186
127 https://doi.org/10.1007/bf01884410
128 rdf:type schema:CreativeWork
129 grid-institutes:grid.211367.0 schema:alternateName Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, California, USA
130 schema:name Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, California, USA
131 rdf:type schema:Organization
132 grid-institutes:grid.266100.3 schema:alternateName Center for Astrophysics and Space Science, University of California at San Diego, 92093, La Jolla, California, USA
133 schema:name Center for Astrophysics and Space Science, University of California at San Diego, 92093, La Jolla, California, USA
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...