Protein biosynthesis in organelles requires misaminoacylation of tRNA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-01

AUTHORS

A Schön, C G Kannangara, S Gough, D Söll

ABSTRACT

In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis. More... »

PAGES

187-190

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/331187a0

DOI

http://dx.doi.org/10.1038/331187a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023534031

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3340166


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chloroplasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hordeum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Amino Acid-Specific", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Gln", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Glu", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00f6n", 
        "givenName": "A", 
        "id": "sg:person.0660133575.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660133575.00"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kannangara", 
        "givenName": "C G", 
        "id": "sg:person.01156254575.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156254575.47"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gough", 
        "givenName": "S", 
        "id": "sg:person.01263157764.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263157764.48"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "S\u00f6ll", 
        "givenName": "D", 
        "id": "sg:person.012067245622.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/322281a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001966447", 
          "https://doi.org/10.1038/322281a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/15.suppl.r53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004350479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(76)90148-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013857548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(80)90198-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016097403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(80)90198-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016097403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1969.tb00788.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018181488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(70)90632-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019459325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(70)90632-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019459325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/274087a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023678538", 
          "https://doi.org/10.1038/274087a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.76.4.1760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030263163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/2.1.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030413884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/322572a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033223243", 
          "https://doi.org/10.1038/322572a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/12.14.5837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033326362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)83693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044738420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)83693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044738420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3775377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062621437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.165.1.88-93.1986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062714681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079905110", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081706583", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081936013", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-01", 
    "datePublishedReg": "1988-01-01", 
    "description": "In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/331187a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6152", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "331"
      }
    ], 
    "name": "Protein biosynthesis in organelles requires misaminoacylation of tRNA", 
    "pagination": "187-190", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "701f53d6ec12f29788aaa19c0a6e56646552b1c0d63331cd98383b4a04fd31b1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3340166"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/331187a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023534031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/331187a0", 
      "https://app.dimensions.ai/details/publication/pub.1023534031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/331187a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/331187a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/331187a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/331187a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/331187a0'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      55 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/331187a0 schema:about N45e9b3ef822a4a53923ecd6bf26ca165
2 N4a57c97b0f034c7cba94580abc838f9b
3 N56bb4abccbdb4f6cb0a4589934dcaea7
4 N598b8a4fb6b94a2592e46f55500947ed
5 N63224ba8134e4d4ea6c87a6f268f65b0
6 N879cc15f51a24c88ba585b470797992f
7 Na728803cd25b47cab8a3ecd2fc7e6ea5
8 Nc1739d1ba8734f8485bb856fa2734876
9 Nedc30a76c1da46cbb63b1143d1bf61c0
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author Nb2cff1ce94f34b23bec85c2851fbc4b0
13 schema:citation sg:pub.10.1038/274087a0
14 sg:pub.10.1038/322281a0
15 sg:pub.10.1038/322572a0
16 https://app.dimensions.ai/details/publication/pub.1079905110
17 https://app.dimensions.ai/details/publication/pub.1081706583
18 https://app.dimensions.ai/details/publication/pub.1081936013
19 https://doi.org/10.1016/0005-2787(70)90632-5
20 https://doi.org/10.1016/0005-2787(80)90198-7
21 https://doi.org/10.1016/0022-2836(76)90148-0
22 https://doi.org/10.1016/s0021-9673(01)83693-1
23 https://doi.org/10.1073/pnas.76.4.1760
24 https://doi.org/10.1093/nar/12.14.5837
25 https://doi.org/10.1093/nar/15.suppl.r53
26 https://doi.org/10.1093/nar/2.1.21
27 https://doi.org/10.1111/j.1432-1033.1969.tb00788.x
28 https://doi.org/10.1126/science.3775377
29 https://doi.org/10.1128/jb.165.1.88-93.1986
30 schema:datePublished 1988-01
31 schema:datePublishedReg 1988-01-01
32 schema:description In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N7f58d44d47184400b0cab724efc83f5a
37 Nab122af6fe8b42eeb0c58209c5b34def
38 sg:journal.1018957
39 schema:name Protein biosynthesis in organelles requires misaminoacylation of tRNA
40 schema:pagination 187-190
41 schema:productId N2628aa3df7284a59aee050d12d8548f1
42 N6fb53cc4670f4e3c8d9f7b00f44f79f9
43 N85110d64b676439886f046a8de87d94c
44 Nc0fed093a8264e9cb841ba21e2f64bca
45 Nc64c66e9dd1e473db2cf1b38b04a023f
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534031
47 https://doi.org/10.1038/331187a0
48 schema:sdDatePublished 2019-04-11T00:03
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N60cabc94ea7847658ca8222f969dee81
51 schema:url http://www.nature.com/articles/331187a0
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N2628aa3df7284a59aee050d12d8548f1 schema:name readcube_id
56 schema:value 701f53d6ec12f29788aaa19c0a6e56646552b1c0d63331cd98383b4a04fd31b1
57 rdf:type schema:PropertyValue
58 N45e9b3ef822a4a53923ecd6bf26ca165 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Acylation
60 rdf:type schema:DefinedTerm
61 N4a57c97b0f034c7cba94580abc838f9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Organoids
63 rdf:type schema:DefinedTerm
64 N56bb4abccbdb4f6cb0a4589934dcaea7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Base Sequence
66 rdf:type schema:DefinedTerm
67 N598b8a4fb6b94a2592e46f55500947ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name RNA, Transfer, Glu
69 rdf:type schema:DefinedTerm
70 N60cabc94ea7847658ca8222f969dee81 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N63224ba8134e4d4ea6c87a6f268f65b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Chloroplasts
74 rdf:type schema:DefinedTerm
75 N6fb53cc4670f4e3c8d9f7b00f44f79f9 schema:name doi
76 schema:value 10.1038/331187a0
77 rdf:type schema:PropertyValue
78 N73cf947c62254c0884e6fff24c331997 rdf:first sg:person.01156254575.47
79 rdf:rest Nf80c952f8ddd415b98fd84cf04e84574
80 N7f58d44d47184400b0cab724efc83f5a schema:issueNumber 6152
81 rdf:type schema:PublicationIssue
82 N85110d64b676439886f046a8de87d94c schema:name pubmed_id
83 schema:value 3340166
84 rdf:type schema:PropertyValue
85 N879cc15f51a24c88ba585b470797992f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name RNA, Transfer, Amino Acid-Specific
87 rdf:type schema:DefinedTerm
88 Na728803cd25b47cab8a3ecd2fc7e6ea5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Plant Proteins
90 rdf:type schema:DefinedTerm
91 Nab122af6fe8b42eeb0c58209c5b34def schema:volumeNumber 331
92 rdf:type schema:PublicationVolume
93 Nb2cff1ce94f34b23bec85c2851fbc4b0 rdf:first sg:person.0660133575.00
94 rdf:rest N73cf947c62254c0884e6fff24c331997
95 Nc0fed093a8264e9cb841ba21e2f64bca schema:name nlm_unique_id
96 schema:value 0410462
97 rdf:type schema:PropertyValue
98 Nc1739d1ba8734f8485bb856fa2734876 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Hordeum
100 rdf:type schema:DefinedTerm
101 Nc64c66e9dd1e473db2cf1b38b04a023f schema:name dimensions_id
102 schema:value pub.1023534031
103 rdf:type schema:PropertyValue
104 Ncb4675bbaab54d8f9cfbbf8d7dc12d7d rdf:first sg:person.012067245622.45
105 rdf:rest rdf:nil
106 Nedc30a76c1da46cbb63b1143d1bf61c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name RNA, Transfer, Gln
108 rdf:type schema:DefinedTerm
109 Nf80c952f8ddd415b98fd84cf04e84574 rdf:first sg:person.01263157764.48
110 rdf:rest Ncb4675bbaab54d8f9cfbbf8d7dc12d7d
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biochemistry and Cell Biology
116 rdf:type schema:DefinedTerm
117 sg:journal.1018957 schema:issn 0090-0028
118 1476-4687
119 schema:name Nature
120 rdf:type schema:Periodical
121 sg:person.01156254575.47 schema:familyName Kannangara
122 schema:givenName C G
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156254575.47
124 rdf:type schema:Person
125 sg:person.012067245622.45 schema:familyName Söll
126 schema:givenName D
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45
128 rdf:type schema:Person
129 sg:person.01263157764.48 schema:familyName Gough
130 schema:givenName S
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263157764.48
132 rdf:type schema:Person
133 sg:person.0660133575.00 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
134 schema:familyName Schön
135 schema:givenName A
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660133575.00
137 rdf:type schema:Person
138 sg:pub.10.1038/274087a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023678538
139 https://doi.org/10.1038/274087a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/322281a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001966447
142 https://doi.org/10.1038/322281a0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/322572a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033223243
145 https://doi.org/10.1038/322572a0
146 rdf:type schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1079905110 schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1081706583 schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1081936013 schema:CreativeWork
150 https://doi.org/10.1016/0005-2787(70)90632-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019459325
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0005-2787(80)90198-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016097403
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0022-2836(76)90148-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013857548
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0021-9673(01)83693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044738420
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.76.4.1760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030263163
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/nar/12.14.5837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033326362
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/nar/15.suppl.r53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004350479
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/nar/2.1.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030413884
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1432-1033.1969.tb00788.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018181488
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.3775377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621437
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1128/jb.165.1.88-93.1986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062714681
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
173 schema:name Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...