Protein biosynthesis in organelles requires misaminoacylation of tRNA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-01

AUTHORS

A Schön, C G Kannangara, S Gough, D Söll

ABSTRACT

In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis. More... »

PAGES

187-190

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/331187a0

DOI

http://dx.doi.org/10.1038/331187a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023534031

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3340166


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chloroplasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hordeum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Amino Acid-Specific", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Gln", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Glu", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00f6n", 
        "givenName": "A", 
        "id": "sg:person.0660133575.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660133575.00"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kannangara", 
        "givenName": "C G", 
        "id": "sg:person.01156254575.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156254575.47"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gough", 
        "givenName": "S", 
        "id": "sg:person.01263157764.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263157764.48"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "S\u00f6ll", 
        "givenName": "D", 
        "id": "sg:person.012067245622.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/322281a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001966447", 
          "https://doi.org/10.1038/322281a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/15.suppl.r53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004350479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(76)90148-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013857548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(80)90198-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016097403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(80)90198-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016097403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1969.tb00788.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018181488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(70)90632-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019459325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(70)90632-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019459325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/274087a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023678538", 
          "https://doi.org/10.1038/274087a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.76.4.1760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030263163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/2.1.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030413884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/322572a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033223243", 
          "https://doi.org/10.1038/322572a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/12.14.5837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033326362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)83693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044738420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)83693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044738420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3775377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062621437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.165.1.88-93.1986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062714681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079905110", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081706583", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081936013", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-01", 
    "datePublishedReg": "1988-01-01", 
    "description": "In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/331187a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6152", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "331"
      }
    ], 
    "name": "Protein biosynthesis in organelles requires misaminoacylation of tRNA", 
    "pagination": "187-190", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "701f53d6ec12f29788aaa19c0a6e56646552b1c0d63331cd98383b4a04fd31b1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3340166"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/331187a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023534031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/331187a0", 
      "https://app.dimensions.ai/details/publication/pub.1023534031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/331187a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/331187a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/331187a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/331187a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/331187a0'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      55 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/331187a0 schema:about N0c8fe2f1d61a4161a26f36b1565a221f
2 N47840b11f5834f6eb448a2baece403f4
3 N5886fa5defe44f95ae436e606f349667
4 Nd544c7a499da4b8e877ae8821dfaed98
5 Ne6fe5a214bfc4d36aada1bf0ae62c770
6 Ne87580b72dbc40e7a38321db2e24bc10
7 Ne9660046a7b04ea798e5c83ce597c94f
8 Nea2a0a435f0346848b991d6445dc38df
9 Nf0df1db009e8485d99cc701e783da95e
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author N0bd9e4d4166d4de8bf5c54f5f751e1a2
13 schema:citation sg:pub.10.1038/274087a0
14 sg:pub.10.1038/322281a0
15 sg:pub.10.1038/322572a0
16 https://app.dimensions.ai/details/publication/pub.1079905110
17 https://app.dimensions.ai/details/publication/pub.1081706583
18 https://app.dimensions.ai/details/publication/pub.1081936013
19 https://doi.org/10.1016/0005-2787(70)90632-5
20 https://doi.org/10.1016/0005-2787(80)90198-7
21 https://doi.org/10.1016/0022-2836(76)90148-0
22 https://doi.org/10.1016/s0021-9673(01)83693-1
23 https://doi.org/10.1073/pnas.76.4.1760
24 https://doi.org/10.1093/nar/12.14.5837
25 https://doi.org/10.1093/nar/15.suppl.r53
26 https://doi.org/10.1093/nar/2.1.21
27 https://doi.org/10.1111/j.1432-1033.1969.tb00788.x
28 https://doi.org/10.1126/science.3775377
29 https://doi.org/10.1128/jb.165.1.88-93.1986
30 schema:datePublished 1988-01
31 schema:datePublishedReg 1988-01-01
32 schema:description In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N17884628a0284c32b66188ed5d2b4ddb
37 Nfc109a44bc1b48ee83766ea316aca0e6
38 sg:journal.1018957
39 schema:name Protein biosynthesis in organelles requires misaminoacylation of tRNA
40 schema:pagination 187-190
41 schema:productId N19c7dec18fa240628bd93d3b8642ff9c
42 N2a72fcb4fd304db6bba9334e5c0760be
43 N4c0f5181bf8d458782c88573465b9c9b
44 N63dd0aec5f004887acb681d35d67c5bf
45 N747f1fd753864858a05c8fda89d1953c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534031
47 https://doi.org/10.1038/331187a0
48 schema:sdDatePublished 2019-04-11T00:03
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nf59ed5ee354a4599a079b67170e7149d
51 schema:url http://www.nature.com/articles/331187a0
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0bd9e4d4166d4de8bf5c54f5f751e1a2 rdf:first sg:person.0660133575.00
56 rdf:rest Nbed7e23442d94fe4baf3ea829b1ba0b0
57 N0c8fe2f1d61a4161a26f36b1565a221f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Plant Proteins
59 rdf:type schema:DefinedTerm
60 N17884628a0284c32b66188ed5d2b4ddb schema:issueNumber 6152
61 rdf:type schema:PublicationIssue
62 N19c7dec18fa240628bd93d3b8642ff9c schema:name doi
63 schema:value 10.1038/331187a0
64 rdf:type schema:PropertyValue
65 N2a72fcb4fd304db6bba9334e5c0760be schema:name pubmed_id
66 schema:value 3340166
67 rdf:type schema:PropertyValue
68 N47840b11f5834f6eb448a2baece403f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name RNA, Transfer, Gln
70 rdf:type schema:DefinedTerm
71 N4895f0807e074e8c8b34f998d05341a7 rdf:first sg:person.012067245622.45
72 rdf:rest rdf:nil
73 N4c0f5181bf8d458782c88573465b9c9b schema:name nlm_unique_id
74 schema:value 0410462
75 rdf:type schema:PropertyValue
76 N5886fa5defe44f95ae436e606f349667 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Hordeum
78 rdf:type schema:DefinedTerm
79 N63dd0aec5f004887acb681d35d67c5bf schema:name dimensions_id
80 schema:value pub.1023534031
81 rdf:type schema:PropertyValue
82 N6a901afc752a4589a88fcbf2f0792d89 rdf:first sg:person.01263157764.48
83 rdf:rest N4895f0807e074e8c8b34f998d05341a7
84 N747f1fd753864858a05c8fda89d1953c schema:name readcube_id
85 schema:value 701f53d6ec12f29788aaa19c0a6e56646552b1c0d63331cd98383b4a04fd31b1
86 rdf:type schema:PropertyValue
87 Nbed7e23442d94fe4baf3ea829b1ba0b0 rdf:first sg:person.01156254575.47
88 rdf:rest N6a901afc752a4589a88fcbf2f0792d89
89 Nd544c7a499da4b8e877ae8821dfaed98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Acylation
91 rdf:type schema:DefinedTerm
92 Ne6fe5a214bfc4d36aada1bf0ae62c770 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name RNA, Transfer, Amino Acid-Specific
94 rdf:type schema:DefinedTerm
95 Ne87580b72dbc40e7a38321db2e24bc10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Organoids
97 rdf:type schema:DefinedTerm
98 Ne9660046a7b04ea798e5c83ce597c94f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name RNA, Transfer, Glu
100 rdf:type schema:DefinedTerm
101 Nea2a0a435f0346848b991d6445dc38df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Base Sequence
103 rdf:type schema:DefinedTerm
104 Nf0df1db009e8485d99cc701e783da95e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Chloroplasts
106 rdf:type schema:DefinedTerm
107 Nf59ed5ee354a4599a079b67170e7149d schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nfc109a44bc1b48ee83766ea316aca0e6 schema:volumeNumber 331
110 rdf:type schema:PublicationVolume
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biochemistry and Cell Biology
116 rdf:type schema:DefinedTerm
117 sg:journal.1018957 schema:issn 0090-0028
118 1476-4687
119 schema:name Nature
120 rdf:type schema:Periodical
121 sg:person.01156254575.47 schema:familyName Kannangara
122 schema:givenName C G
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156254575.47
124 rdf:type schema:Person
125 sg:person.012067245622.45 schema:familyName Söll
126 schema:givenName D
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45
128 rdf:type schema:Person
129 sg:person.01263157764.48 schema:familyName Gough
130 schema:givenName S
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263157764.48
132 rdf:type schema:Person
133 sg:person.0660133575.00 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
134 schema:familyName Schön
135 schema:givenName A
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660133575.00
137 rdf:type schema:Person
138 sg:pub.10.1038/274087a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023678538
139 https://doi.org/10.1038/274087a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/322281a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001966447
142 https://doi.org/10.1038/322281a0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/322572a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033223243
145 https://doi.org/10.1038/322572a0
146 rdf:type schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1079905110 schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1081706583 schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1081936013 schema:CreativeWork
150 https://doi.org/10.1016/0005-2787(70)90632-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019459325
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0005-2787(80)90198-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016097403
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0022-2836(76)90148-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013857548
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0021-9673(01)83693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044738420
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.76.4.1760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030263163
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/nar/12.14.5837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033326362
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/nar/15.suppl.r53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004350479
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/nar/2.1.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030413884
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1432-1033.1969.tb00788.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018181488
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.3775377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621437
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1128/jb.165.1.88-93.1986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062714681
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
173 schema:name Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...