Protein biosynthesis in organelles requires misaminoacylation of tRNA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-01

AUTHORS

A Schön, C G Kannangara, S Gough, D Söll

ABSTRACT

In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis. More... »

PAGES

187-190

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/331187a0

DOI

http://dx.doi.org/10.1038/331187a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023534031

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3340166


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chloroplasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hordeum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Amino Acid-Specific", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Gln", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Glu", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00f6n", 
        "givenName": "A", 
        "id": "sg:person.0660133575.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660133575.00"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kannangara", 
        "givenName": "C G", 
        "id": "sg:person.01156254575.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156254575.47"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gough", 
        "givenName": "S", 
        "id": "sg:person.01263157764.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263157764.48"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "S\u00f6ll", 
        "givenName": "D", 
        "id": "sg:person.012067245622.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/322281a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001966447", 
          "https://doi.org/10.1038/322281a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/15.suppl.r53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004350479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(76)90148-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013857548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(80)90198-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016097403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(80)90198-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016097403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1969.tb00788.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018181488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(70)90632-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019459325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(70)90632-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019459325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/274087a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023678538", 
          "https://doi.org/10.1038/274087a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.76.4.1760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030263163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/2.1.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030413884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/322572a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033223243", 
          "https://doi.org/10.1038/322572a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/12.14.5837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033326362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)83693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044738420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)83693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044738420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3775377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062621437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.165.1.88-93.1986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062714681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079905110", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081706583", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081936013", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-01", 
    "datePublishedReg": "1988-01-01", 
    "description": "In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/331187a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6152", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "331"
      }
    ], 
    "name": "Protein biosynthesis in organelles requires misaminoacylation of tRNA", 
    "pagination": "187-190", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "701f53d6ec12f29788aaa19c0a6e56646552b1c0d63331cd98383b4a04fd31b1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3340166"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/331187a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023534031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/331187a0", 
      "https://app.dimensions.ai/details/publication/pub.1023534031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/331187a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/331187a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/331187a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/331187a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/331187a0'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      55 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/331187a0 schema:about N088b0fb019854ede9e534fae50c5ba90
2 N106248e462fa48b8bf22033a328f065d
3 N37656502cf5447c5ac55ac6f4af56c85
4 N3a56fe1b67b14b9a9afac36c3ab3b874
5 N561357085d6f41c4834f71a0019e57a6
6 N585fec9ee30741f4be6ba08b1787d268
7 N8760469b20c8436498b89534bdae4071
8 N8d3936ba92d74c91a5714ec6523ff154
9 Nff8194f2897543e3b519b80a7aa9318e
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author N5a5dda0339cc44e0b147fdaaed85b408
13 schema:citation sg:pub.10.1038/274087a0
14 sg:pub.10.1038/322281a0
15 sg:pub.10.1038/322572a0
16 https://app.dimensions.ai/details/publication/pub.1079905110
17 https://app.dimensions.ai/details/publication/pub.1081706583
18 https://app.dimensions.ai/details/publication/pub.1081936013
19 https://doi.org/10.1016/0005-2787(70)90632-5
20 https://doi.org/10.1016/0005-2787(80)90198-7
21 https://doi.org/10.1016/0022-2836(76)90148-0
22 https://doi.org/10.1016/s0021-9673(01)83693-1
23 https://doi.org/10.1073/pnas.76.4.1760
24 https://doi.org/10.1093/nar/12.14.5837
25 https://doi.org/10.1093/nar/15.suppl.r53
26 https://doi.org/10.1093/nar/2.1.21
27 https://doi.org/10.1111/j.1432-1033.1969.tb00788.x
28 https://doi.org/10.1126/science.3775377
29 https://doi.org/10.1128/jb.165.1.88-93.1986
30 schema:datePublished 1988-01
31 schema:datePublishedReg 1988-01-01
32 schema:description In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N169d414314154506b89ed808bb8eb84e
37 Nf11d74fa90bb408681d8e35eae52040c
38 sg:journal.1018957
39 schema:name Protein biosynthesis in organelles requires misaminoacylation of tRNA
40 schema:pagination 187-190
41 schema:productId N31566b858935453c9be484489fc5d53e
42 N56a69a12f9904c508c039a2ff58dc53f
43 N76a1272faca84f7f990345cf853844bb
44 Nbdccac6c3ea142408587219a289f7895
45 Nfeae481203cb485faa2de2fab3ec972c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534031
47 https://doi.org/10.1038/331187a0
48 schema:sdDatePublished 2019-04-11T00:03
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N5adc23bbb68c48f3b95375e6bdaa8e32
51 schema:url http://www.nature.com/articles/331187a0
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N088b0fb019854ede9e534fae50c5ba90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name RNA, Transfer, Amino Acid-Specific
57 rdf:type schema:DefinedTerm
58 N106248e462fa48b8bf22033a328f065d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Plant Proteins
60 rdf:type schema:DefinedTerm
61 N169d414314154506b89ed808bb8eb84e schema:volumeNumber 331
62 rdf:type schema:PublicationVolume
63 N1d8cafa26a2b4f86b6da2d8f30de4dc7 rdf:first sg:person.012067245622.45
64 rdf:rest rdf:nil
65 N31566b858935453c9be484489fc5d53e schema:name doi
66 schema:value 10.1038/331187a0
67 rdf:type schema:PropertyValue
68 N37656502cf5447c5ac55ac6f4af56c85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name RNA, Transfer, Glu
70 rdf:type schema:DefinedTerm
71 N3a56fe1b67b14b9a9afac36c3ab3b874 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Organoids
73 rdf:type schema:DefinedTerm
74 N561357085d6f41c4834f71a0019e57a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name RNA, Transfer, Gln
76 rdf:type schema:DefinedTerm
77 N56a69a12f9904c508c039a2ff58dc53f schema:name dimensions_id
78 schema:value pub.1023534031
79 rdf:type schema:PropertyValue
80 N585fec9ee30741f4be6ba08b1787d268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Base Sequence
82 rdf:type schema:DefinedTerm
83 N5a5dda0339cc44e0b147fdaaed85b408 rdf:first sg:person.0660133575.00
84 rdf:rest Ndc83be87c502427faf0c3348b4734882
85 N5adc23bbb68c48f3b95375e6bdaa8e32 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N76a1272faca84f7f990345cf853844bb schema:name nlm_unique_id
88 schema:value 0410462
89 rdf:type schema:PropertyValue
90 N8760469b20c8436498b89534bdae4071 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Hordeum
92 rdf:type schema:DefinedTerm
93 N8d3936ba92d74c91a5714ec6523ff154 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Acylation
95 rdf:type schema:DefinedTerm
96 N9779487e670947e480b982a3b0662d40 rdf:first sg:person.01263157764.48
97 rdf:rest N1d8cafa26a2b4f86b6da2d8f30de4dc7
98 Nbdccac6c3ea142408587219a289f7895 schema:name readcube_id
99 schema:value 701f53d6ec12f29788aaa19c0a6e56646552b1c0d63331cd98383b4a04fd31b1
100 rdf:type schema:PropertyValue
101 Ndc83be87c502427faf0c3348b4734882 rdf:first sg:person.01156254575.47
102 rdf:rest N9779487e670947e480b982a3b0662d40
103 Nf11d74fa90bb408681d8e35eae52040c schema:issueNumber 6152
104 rdf:type schema:PublicationIssue
105 Nfeae481203cb485faa2de2fab3ec972c schema:name pubmed_id
106 schema:value 3340166
107 rdf:type schema:PropertyValue
108 Nff8194f2897543e3b519b80a7aa9318e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Chloroplasts
110 rdf:type schema:DefinedTerm
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biochemistry and Cell Biology
116 rdf:type schema:DefinedTerm
117 sg:journal.1018957 schema:issn 0090-0028
118 1476-4687
119 schema:name Nature
120 rdf:type schema:Periodical
121 sg:person.01156254575.47 schema:familyName Kannangara
122 schema:givenName C G
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156254575.47
124 rdf:type schema:Person
125 sg:person.012067245622.45 schema:familyName Söll
126 schema:givenName D
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45
128 rdf:type schema:Person
129 sg:person.01263157764.48 schema:familyName Gough
130 schema:givenName S
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263157764.48
132 rdf:type schema:Person
133 sg:person.0660133575.00 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
134 schema:familyName Schön
135 schema:givenName A
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660133575.00
137 rdf:type schema:Person
138 sg:pub.10.1038/274087a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023678538
139 https://doi.org/10.1038/274087a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/322281a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001966447
142 https://doi.org/10.1038/322281a0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/322572a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033223243
145 https://doi.org/10.1038/322572a0
146 rdf:type schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1079905110 schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1081706583 schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1081936013 schema:CreativeWork
150 https://doi.org/10.1016/0005-2787(70)90632-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019459325
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0005-2787(80)90198-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016097403
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0022-2836(76)90148-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013857548
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0021-9673(01)83693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044738420
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.76.4.1760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030263163
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/nar/12.14.5837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033326362
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/nar/15.suppl.r53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004350479
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/nar/2.1.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030413884
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1432-1033.1969.tb00788.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018181488
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.3775377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621437
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1128/jb.165.1.88-93.1986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062714681
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
173 schema:name Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...