Pairing of charge-ordered stripes in (La,Ca)MnO3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-04

AUTHORS

S. Mori, C. H. Chen, S.-W. Cheong

ABSTRACT

The propensity of systems of charge and spin to form, under certain conditions, ‘stripe’ phases has recently attracted much attention, as it has been suggested that dynamically fluctuating stripe phases may be of central importance for an understanding of the physics of high-temperature superconductors1,2,3,4,5. A related phenomenon — static charge stripes — characterizes6 the insulating antiferromagnetic ground state of the manganese oxides, a class of materials which (like the copper oxide superconductors) have a perovskite structure, and are notable for their extraordinary electronic and magnetic properties, such as colossal magnetoresistance and charge ordering7,8. Here we report a different pattern of charge localization in the charge-ordered phase of the manganese oxide La1−xCaxMnO3 (x  0.5). This pattern takes the form of extremely stable pairs of Mn3+O6 stripes, with associated large lattice contractions (due to the Jahn–Teller effect), separated periodically by stripes of non-distorted Mn4+O6 octahedra. These periodicities, which adopt integer values between 2 and 5 times the lattice parameter of the orthorhombic unit cell, correspond to the commensurate carrier concentrations (x = 1/2, 2/3, 3/4 and 4/5): for other values of x, the pattern of charge ordering is a mixture of the two adjacent commensurate configurations. These paired Jahn–Teller stripes appear therefore to be the fundamental building blocks of the charge-ordered state in the manganese oxides, and so may be expected to have profound implications for the magnetic and transport properties of these materials. More... »

PAGES

473

Journal

TITLE

Nature

ISSUE

6675

VOLUME

392

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/33105

DOI

http://dx.doi.org/10.1038/33105

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017343607


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nokia (United States)", 
          "id": "https://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "*Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "S.", 
        "id": "sg:person.016652121301.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652121301.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nokia (United States)", 
          "id": "https://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "*Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "C. H.", 
        "id": "sg:person.01346440030.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346440030.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "*Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA", 
            "\u2020Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheong", 
        "givenName": "S.-W.", 
        "id": "sg:person.01343173234.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343173234.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/386813a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006462287", 
          "https://doi.org/10.1038/386813a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(97)00633-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022501187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02765712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029531047", 
          "https://doi.org/10.1007/bf02765712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037624168", 
          "https://doi.org/10.1038/375561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041715509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041715509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386256a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052817361", 
          "https://doi.org/10.1038/386256a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.364758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057991434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.1496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.1496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.13985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.13985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.3015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.3015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.7549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.7549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.8902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.8902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.264.5157.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5238.961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5329.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557747"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-04", 
    "datePublishedReg": "1998-04-01", 
    "description": "The propensity of systems of charge and spin to form, under certain conditions, \u2018stripe\u2019 phases has recently attracted much attention, as it has been suggested that dynamically fluctuating stripe phases may be of central importance for an understanding of the physics of high-temperature superconductors1,2,3,4,5. A related phenomenon \u2014 static charge stripes \u2014 characterizes6 the insulating antiferromagnetic ground state of the manganese oxides, a class of materials which (like the copper oxide superconductors) have a perovskite structure, and are notable for their extraordinary electronic and magnetic properties, such as colossal magnetoresistance and charge ordering7,8. Here we report a different pattern of charge localization in the charge-ordered phase of the manganese oxide La1\u2212xCaxMnO3 (x \ue2f6 0.5). This pattern takes the form of extremely stable pairs of Mn3+O6 stripes, with associated large lattice contractions (due to the Jahn\u2013Teller effect), separated periodically by stripes of non-distorted Mn4+O6 octahedra. These periodicities, which adopt integer values between 2 and 5 times the lattice parameter of the orthorhombic unit cell, correspond to the commensurate carrier concentrations (x = 1/2, 2/3, 3/4 and 4/5): for other values of x, the pattern of charge ordering is a mixture of the two adjacent commensurate configurations. These paired Jahn\u2013Teller stripes appear therefore to be the fundamental building blocks of the charge-ordered state in the manganese oxides, and so may be expected to have profound implications for the magnetic and transport properties of these materials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/33105", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6675", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "392"
      }
    ], 
    "name": "Pairing of charge-ordered stripes in (La,Ca)MnO3", 
    "pagination": "473", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "52a1bfc7fff8d2cdeec5b406cd7e7042e9f45fc35a801cbe30a79d9f21038481"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/33105"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017343607"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/33105", 
      "https://app.dimensions.ai/details/publication/pub.1017343607"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87109_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/33105"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/33105'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/33105'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/33105'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/33105'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/33105 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8c06a26800f94580a5f97de9f7eac973
4 schema:citation sg:pub.10.1007/bf02765712
5 sg:pub.10.1038/375561a0
6 sg:pub.10.1038/386256a0
7 sg:pub.10.1038/386813a0
8 https://doi.org/10.1016/s0921-4526(97)00633-9
9 https://doi.org/10.1063/1.364758
10 https://doi.org/10.1103/physrev.100.545
11 https://doi.org/10.1103/physrev.100.564
12 https://doi.org/10.1103/physrevb.14.1496
13 https://doi.org/10.1103/physrevb.40.7391
14 https://doi.org/10.1103/physrevb.53.13985
15 https://doi.org/10.1103/physrevb.55.3015
16 https://doi.org/10.1103/physrevb.55.7549
17 https://doi.org/10.1103/physrevb.56.8902
18 https://doi.org/10.1103/physrevlett.74.5108
19 https://doi.org/10.1103/physrevlett.76.3188
20 https://doi.org/10.1103/physrevlett.76.4042
21 https://doi.org/10.1103/physrevlett.77.155
22 https://doi.org/10.1126/science.264.5157.413
23 https://doi.org/10.1126/science.270.5238.961
24 https://doi.org/10.1126/science.277.5329.1067
25 schema:datePublished 1998-04
26 schema:datePublishedReg 1998-04-01
27 schema:description The propensity of systems of charge and spin to form, under certain conditions, ‘stripe’ phases has recently attracted much attention, as it has been suggested that dynamically fluctuating stripe phases may be of central importance for an understanding of the physics of high-temperature superconductors1,2,3,4,5. A related phenomenon — static charge stripes — characterizes6 the insulating antiferromagnetic ground state of the manganese oxides, a class of materials which (like the copper oxide superconductors) have a perovskite structure, and are notable for their extraordinary electronic and magnetic properties, such as colossal magnetoresistance and charge ordering7,8. Here we report a different pattern of charge localization in the charge-ordered phase of the manganese oxide La1−xCaxMnO3 (x  0.5). This pattern takes the form of extremely stable pairs of Mn3+O6 stripes, with associated large lattice contractions (due to the Jahn–Teller effect), separated periodically by stripes of non-distorted Mn4+O6 octahedra. These periodicities, which adopt integer values between 2 and 5 times the lattice parameter of the orthorhombic unit cell, correspond to the commensurate carrier concentrations (x = 1/2, 2/3, 3/4 and 4/5): for other values of x, the pattern of charge ordering is a mixture of the two adjacent commensurate configurations. These paired Jahn–Teller stripes appear therefore to be the fundamental building blocks of the charge-ordered state in the manganese oxides, and so may be expected to have profound implications for the magnetic and transport properties of these materials.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Ne53500c0086e473e8ac433d8b3415906
32 Nfaaffc8e022f4cc5aa9143cefb0797f5
33 sg:journal.1018957
34 schema:name Pairing of charge-ordered stripes in (La,Ca)MnO3
35 schema:pagination 473
36 schema:productId N8c5486ef409a4120a180d86962033be8
37 Na385501c33db42028c0cccb734d24b07
38 Nbd9b07ffb2e84ab4bc4f845eea209b9b
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017343607
40 https://doi.org/10.1038/33105
41 schema:sdDatePublished 2019-04-11T12:26
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N9351f2f93053409ba21e3f3e8d9788a2
44 schema:url https://www.nature.com/articles/33105
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N107851f5a17440dcae6b734030bb14d7 rdf:first sg:person.01343173234.66
49 rdf:rest rdf:nil
50 N11f063ac7d5141119e88c9865c2e7c3d rdf:first sg:person.01346440030.18
51 rdf:rest N107851f5a17440dcae6b734030bb14d7
52 N8c06a26800f94580a5f97de9f7eac973 rdf:first sg:person.016652121301.40
53 rdf:rest N11f063ac7d5141119e88c9865c2e7c3d
54 N8c5486ef409a4120a180d86962033be8 schema:name readcube_id
55 schema:value 52a1bfc7fff8d2cdeec5b406cd7e7042e9f45fc35a801cbe30a79d9f21038481
56 rdf:type schema:PropertyValue
57 N9351f2f93053409ba21e3f3e8d9788a2 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Na385501c33db42028c0cccb734d24b07 schema:name dimensions_id
60 schema:value pub.1017343607
61 rdf:type schema:PropertyValue
62 Nbd9b07ffb2e84ab4bc4f845eea209b9b schema:name doi
63 schema:value 10.1038/33105
64 rdf:type schema:PropertyValue
65 Ne53500c0086e473e8ac433d8b3415906 schema:volumeNumber 392
66 rdf:type schema:PublicationVolume
67 Nfaaffc8e022f4cc5aa9143cefb0797f5 schema:issueNumber 6675
68 rdf:type schema:PublicationIssue
69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
70 schema:name Engineering
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
73 schema:name Materials Engineering
74 rdf:type schema:DefinedTerm
75 sg:journal.1018957 schema:issn 0090-0028
76 1476-4687
77 schema:name Nature
78 rdf:type schema:Periodical
79 sg:person.01343173234.66 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
80 schema:familyName Cheong
81 schema:givenName S.-W.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343173234.66
83 rdf:type schema:Person
84 sg:person.01346440030.18 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
85 schema:familyName Chen
86 schema:givenName C. H.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346440030.18
88 rdf:type schema:Person
89 sg:person.016652121301.40 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
90 schema:familyName Mori
91 schema:givenName S.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652121301.40
93 rdf:type schema:Person
94 sg:pub.10.1007/bf02765712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029531047
95 https://doi.org/10.1007/bf02765712
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/375561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037624168
98 https://doi.org/10.1038/375561a0
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/386256a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052817361
101 https://doi.org/10.1038/386256a0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/386813a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006462287
104 https://doi.org/10.1038/386813a0
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0921-4526(97)00633-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022501187
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1063/1.364758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057991434
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrev.100.545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416828
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrev.100.564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416829
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.14.1496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521364
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.40.7391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060552433
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.53.13985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060579647
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.55.3015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584181
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.55.7549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584706
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.56.8902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060586747
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.74.5108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811311
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.76.3188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813029
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.76.4042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813227
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.77.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041715509
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1126/science.264.5157.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548008
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1126/science.270.5238.961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551587
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1126/science.277.5329.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557747
139 rdf:type schema:CreativeWork
140 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
141 schema:name *Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
142 †Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855, USA
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.469490.6 schema:alternateName Nokia (United States)
145 schema:name *Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...