Global surface-temperature responses to major volcanic eruptions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-11

AUTHORS

C. B. Sear, P. M. Kelly, P. D. Jones, C. M. Goodess

ABSTRACT

The impacts of pollution resulting from large explosive volcanic eruptions on the atmospheric heat budget and planetary albedo are not in doubt1,2. However, the effects of volcanic aerosols on the surface climate are less clear and still controversial3,4. In a previous study5 it was shown that significant surface cooling occurs over the landmasses of the Northern Hemisphere in the first few months after a major eruption in that hemisphere. Here we extend that work using new surface-air temperature compilations based on land and marine data6 for both the Northern and Southern Hemispheres. Our results indicate that major Northern Hemisphere eruptions have an immediate effect on the Northern Hemisphere average surface temperature but little or no effect on the Southern Hemisphere average. Southern Hemisphere eruptions affect both Southern and Northern Hemisphere temperatures after a lag of between six months and a year. More... »

PAGES

365-367

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/330365a0

DOI

http://dx.doi.org/10.1038/330365a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011099354


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Natural Environment Research Council, British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.478592.5", 
          "name": [
            "Natural Environment Research Council, British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sear", 
        "givenName": "C. B.", 
        "id": "sg:person.012711432465.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711432465.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelly", 
        "givenName": "P. M.", 
        "id": "sg:person.011721062357.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721062357.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "P. D.", 
        "id": "sg:person.01105643375.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105643375.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodess", 
        "givenName": "C. M.", 
        "id": "sg:person.012776154461.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776154461.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987-11", 
    "datePublishedReg": "1987-11-01", 
    "description": "The impacts of pollution resulting from large explosive volcanic eruptions on the atmospheric heat budget and planetary albedo are not in doubt1,2. However, the effects of volcanic aerosols on the surface climate are less clear and still controversial3,4. In a previous study5 it was shown that significant surface cooling occurs over the landmasses of the Northern Hemisphere in the first few months after a major eruption in that hemisphere. Here we extend that work using new surface-air temperature compilations based on land and marine data6 for both the Northern and Southern Hemispheres. Our results indicate that major Northern Hemisphere eruptions have an immediate effect on the Northern Hemisphere average surface temperature but little or no effect on the Southern Hemisphere average. Southern Hemisphere eruptions affect both Southern and Northern Hemisphere temperatures after a lag of between six months and a year.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/330365a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6146", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "330"
      }
    ], 
    "keywords": [
      "volcanic eruptions", 
      "Southern Hemisphere", 
      "large explosive volcanic eruptions", 
      "global surface temperature response", 
      "Northern Hemisphere eruptions", 
      "Southern Hemisphere eruption", 
      "major volcanic eruptions", 
      "Northern Hemisphere temperature", 
      "explosive volcanic eruptions", 
      "atmospheric heat budget", 
      "surface temperature response", 
      "average surface temperature", 
      "volcanic aerosols", 
      "surface climate", 
      "heat budget", 
      "major eruptions", 
      "Hemisphere temperature", 
      "planetary albedo", 
      "Northern Hemisphere", 
      "surface temperature", 
      "impact of pollution", 
      "significant surface", 
      "eruption", 
      "hemisphere", 
      "landmass", 
      "albedo", 
      "aerosols", 
      "climate", 
      "budget", 
      "land", 
      "compilation", 
      "pollution", 
      "temperature", 
      "lag", 
      "surface", 
      "impact", 
      "years", 
      "effect", 
      "months", 
      "results", 
      "immediate effects", 
      "response", 
      "work"
    ], 
    "name": "Global surface-temperature responses to major volcanic eruptions", 
    "pagination": "365-367", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011099354"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/330365a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/330365a0", 
      "https://app.dimensions.ai/details/publication/pub.1011099354"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_180.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/330365a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/330365a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/330365a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/330365a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/330365a0'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      20 PREDICATES      69 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/330365a0 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 anzsrc-for:0406
4 schema:author N29939c96f0e4431a8219c3484c4cafa0
5 schema:datePublished 1987-11
6 schema:datePublishedReg 1987-11-01
7 schema:description The impacts of pollution resulting from large explosive volcanic eruptions on the atmospheric heat budget and planetary albedo are not in doubt1,2. However, the effects of volcanic aerosols on the surface climate are less clear and still controversial3,4. In a previous study5 it was shown that significant surface cooling occurs over the landmasses of the Northern Hemisphere in the first few months after a major eruption in that hemisphere. Here we extend that work using new surface-air temperature compilations based on land and marine data6 for both the Northern and Southern Hemispheres. Our results indicate that major Northern Hemisphere eruptions have an immediate effect on the Northern Hemisphere average surface temperature but little or no effect on the Southern Hemisphere average. Southern Hemisphere eruptions affect both Southern and Northern Hemisphere temperatures after a lag of between six months and a year.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N6dcee43635b4405298974617ccc33c37
11 Nef27d7f6dd66492ca1fb6b791870cc26
12 sg:journal.1018957
13 schema:keywords Hemisphere temperature
14 Northern Hemisphere
15 Northern Hemisphere eruptions
16 Northern Hemisphere temperature
17 Southern Hemisphere
18 Southern Hemisphere eruption
19 aerosols
20 albedo
21 atmospheric heat budget
22 average surface temperature
23 budget
24 climate
25 compilation
26 effect
27 eruption
28 explosive volcanic eruptions
29 global surface temperature response
30 heat budget
31 hemisphere
32 immediate effects
33 impact
34 impact of pollution
35 lag
36 land
37 landmass
38 large explosive volcanic eruptions
39 major eruptions
40 major volcanic eruptions
41 months
42 planetary albedo
43 pollution
44 response
45 results
46 significant surface
47 surface
48 surface climate
49 surface temperature
50 surface temperature response
51 temperature
52 volcanic aerosols
53 volcanic eruptions
54 work
55 years
56 schema:name Global surface-temperature responses to major volcanic eruptions
57 schema:pagination 365-367
58 schema:productId Ncba7ed1d19e4446296ab0429e6130e52
59 Nd0cf7c6ca52f4c30810c637dda2c244d
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011099354
61 https://doi.org/10.1038/330365a0
62 schema:sdDatePublished 2022-11-24T20:46
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nc8e4b4b120cc4ead8b19d2feff174db1
65 schema:url https://doi.org/10.1038/330365a0
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N13820197b2724d1c996ceec819a0df8b rdf:first sg:person.012776154461.95
70 rdf:rest rdf:nil
71 N178038db35634c30aaaf0fb6a24eb087 rdf:first sg:person.011721062357.97
72 rdf:rest N5a9a23c9837f4bfea0d9fb341e191ea4
73 N29939c96f0e4431a8219c3484c4cafa0 rdf:first sg:person.012711432465.54
74 rdf:rest N178038db35634c30aaaf0fb6a24eb087
75 N5a9a23c9837f4bfea0d9fb341e191ea4 rdf:first sg:person.01105643375.36
76 rdf:rest N13820197b2724d1c996ceec819a0df8b
77 N6dcee43635b4405298974617ccc33c37 schema:volumeNumber 330
78 rdf:type schema:PublicationVolume
79 Nc8e4b4b120cc4ead8b19d2feff174db1 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Ncba7ed1d19e4446296ab0429e6130e52 schema:name dimensions_id
82 schema:value pub.1011099354
83 rdf:type schema:PropertyValue
84 Nd0cf7c6ca52f4c30810c637dda2c244d schema:name doi
85 schema:value 10.1038/330365a0
86 rdf:type schema:PropertyValue
87 Nef27d7f6dd66492ca1fb6b791870cc26 schema:issueNumber 6146
88 rdf:type schema:PublicationIssue
89 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
90 schema:name Earth Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
93 schema:name Geology
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Geography and Environmental Geoscience
97 rdf:type schema:DefinedTerm
98 sg:journal.1018957 schema:issn 0028-0836
99 1476-4687
100 schema:name Nature
101 schema:publisher Springer Nature
102 rdf:type schema:Periodical
103 sg:person.01105643375.36 schema:affiliation grid-institutes:grid.8273.e
104 schema:familyName Jones
105 schema:givenName P. D.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105643375.36
107 rdf:type schema:Person
108 sg:person.011721062357.97 schema:affiliation grid-institutes:grid.8273.e
109 schema:familyName Kelly
110 schema:givenName P. M.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721062357.97
112 rdf:type schema:Person
113 sg:person.012711432465.54 schema:affiliation grid-institutes:grid.478592.5
114 schema:familyName Sear
115 schema:givenName C. B.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711432465.54
117 rdf:type schema:Person
118 sg:person.012776154461.95 schema:affiliation grid-institutes:grid.8273.e
119 schema:familyName Goodess
120 schema:givenName C. M.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776154461.95
122 rdf:type schema:Person
123 grid-institutes:grid.478592.5 schema:alternateName Natural Environment Research Council, British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, UK
124 schema:name Natural Environment Research Council, British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, UK
125 rdf:type schema:Organization
126 grid-institutes:grid.8273.e schema:alternateName Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
127 schema:name Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...