An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-10

AUTHORS

B Seed

ABSTRACT

Recently the human T cell erythrocyte receptor CD2 has been shown to bind human erythrocytes through LFA-3, a heavily glycosylated surface protein of broad tissue distribution. CD2-LFA-3 interactions are important for cytolytic conjugate formation, for thymocyte adhesion, and for T cell activation. A complementary DNA clone encoding LFA-3 was isolated using a complementary DNA clone encoding LFA-3 was isolated using a novel transient expression system of mouse cells. The cDNA encodes a phospholipid-linked membrane protein whose extracellular domain shares significant homology with CD2. As CD2 is homologous with the neural cell adhesion molecule NCAM in immunoglobulin-like domains, cellular adhesion molecules in both neural and lymphoid tissues could have a common ancestor. More... »

PAGES

840-842

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6142

VOLUME

329

Author Affiliations

Related Patents

  • Enhancement Of Placental Stem Cell Potency Using Modulatory Rna Molecules
  • Multimeric Antiviral Agent
  • Methods For The Treatment Of Autoimmune Disorders Using Immunosuppressive Monoclonal Antibodies With Reduced Toxicity
  • Vaccines For Treatment Of Lymphoma And Leukemia
  • Method Of Using Cd2-Binding Domain Of Lymphocyte Function Associated Antigen 3 To Initiate T Cell Activation
  • Methods Of Inducing Regulated Pancreatic Hormone Production In Non-Pancreatic Islet Tissues
  • Anti-Pd-L1 Antibodies And Uses Therefor
  • Dna Sequences, Recombinant Dna Molecules And Processes For Producing Lymphocyte Function Associated Antigen-3
  • Use Of Copper And Glutamate In Cell Culture For Production Of Polypeptides
  • Protein Tyrosine Kinase Substrate Lat And Its Use In The Indentification Of (Ant)Agonists Of The Kinase
  • Methods For Stimulating T Cell Responses To Tumor Cells Expressing Lfa-3 And A Cd28 Or Ctla4 Ligand
  • Aortic Carboxypeptidase-Like Protein And Nucleic Acids Encoding Same
  • Modified Human Chorionic Gonadotropin (Β-Hcg) Proteins And Their Medical Use
  • Method For Detecting And Determining Mediators
  • Mammalian Cell Surface Antigens
  • Proteins Produced By Human Lymphocytes Dna Sequence Encoding These Proteins And Their Pharmaceutical And Biological Uses
  • Proteins Produced By Human Lymphocytes, Dna Sequence Encoding These Proteins And Their Pharmaceutical And Biological Use
  • Cd2-Binding Domain Of Lymphocyte Function Associated Antigen-3
  • Human Rhinovirus Receptor Protein (Icam-1) That Inhibits Rhinovirus Attachment And Infectivity
  • Multimeric Form Of Human Rhinovirus Receptor Protein
  • Antibodies Against The Receptor Protein For Human B Cell Stimulatory Factor-2
  • Enhancement Of Natural Killer (Nk) Cell Proliferation And Activity
  • Dna Sequences, Recombinant Dna Molecules And Processes For Producing Pi-Linked Lymphocyte Function Associated Antigen-3
  • Dna Encoding Mammalian Phosphodiesterases
  • Monoclonal Antibodies Against Cdx
  • Method Of Treating Virus-Induced Cancer
  • Human Anti-Pd-1 Antibodies And Uses Therefor
  • Methods Of Ex Vivo Hematopoietic Stem Cell Expansion By Co-Culture With Mesenchymal Cells
  • Methods And Compositions For Delivery Of Pharmaceutical Agents
  • Protein Tyrosine Kinase Substrate Lat And Its Use In The Identification Of (Ant) Agonists Of The Kinase
  • Methods Of Controlling Proliferation And Differentiation Of Stem And Progenitor Cells
  • Cell Populations, Methods Of Transdifferentiation And Methods Of Use Thereof
  • Glycolysis-Inhibiting Substances In Cell Culture
  • Methods And Compositions For The Identification Of Antibiotics That Are Not Susceptible To Antibiotic Resistance In Pseudomonas Aeruginosa
  • Constructs For Expressing Lysosomal Polypeptides
  • Liver Enriched Transcription Factor
  • Method Of Producing The Polypeptide For Treating Virus-Induced Cancer
  • Hematopoietic Stem Cell Growth Factor (Scgf)
  • Methods And Materials For Modulation Of The Immunosuppresive Activity And Toxicity Of Monoclonal Antibodies
  • Antiviral Methods Using Fragments Of Human Rhinovirus Receptor (Icam-1)
  • Method Of Prophylaxis Or Treatment Of Antigen Presenting Cell Driven Skin Conditions Using Inhibitors Of The Cd2/Lfa-3 Interaction
  • Ags Proteins And Nucleic Acid Molecules And Uses Therefor
  • Method Of Enhancing Proliferation Or Differentiation Of Hematopoietic Stem Cells Using Wnt Polypeptides
  • Antibody To Human Interleukin-6 Receptor
  • Assay Methods Using Dna Encoding Mammalian Phosphodiesterases
  • Chimeric Proteins Comprising Liver Enriched Transcription Factors And Nucleic Acids Encoding The Same
  • Methods Of Promoting Immunopotentiation And Preparing Antibodies With Anti-Cd3 Antibodies
  • Dna Encoding Mammalian Phosphodiesterases
  • Dna Encoding Mammalian Phosphodiesterases
  • Antibodies To The Slam Protein Expressed On Activated T Cells
  • Receptor Protein For Human B Cell Stimulatory Factor-2
  • Dna Sequences Encoding Vascular Cell Adhesion Molecules (Vcams)
  • Recombinant Dna Molecule Comprising Lymphocyte Function-Associated Antigen 3 Phosphatidylinositol Linkage Signal Sequence
  • Methods Of Treating Lymphoma And Leukemia
  • Targets For The Identification Of Antibiotics That Are Not Susceptible To Antibiotic Resistance
  • Mammalian Expression Vector
  • Gene Variants Coding For Proteins From The Metabolic Pathway Of Fine Chemicals
  • Antibodies That Bind To Repulsive Guidance Molecule A (Rgma)
  • Mucin Fusion Polypeptide Vaccines, Compositions And Methods Of Use Thereof
  • Dna Sequences, Recombinant Dna Molecules And Processes For Producing Lymphocyte Function Associated Antigen-3
  • Methods For The Identification Of Antibiotics That Are Not Susceptible To Antibiotic Resistance In Pseudomonas Aeruginosa
  • Treatment Of Chronic Nephropathies Using Soluble Complement Receptor Type I (Scr1)
  • Recombinant Animal Interferon Polypeptides
  • Antibodies Against The Rgm A Protein And Uses Thereof
  • Methods Of Culturing And Expanding Mesenchymal Stem Cells
  • Treatment Of Chronic Nephropathies Using Soluble Complement Receptor Type I (Scr1)
  • Protein Micelles
  • Protein Involved In Restoration Of Cytoplasmic Male Sterility To Fertility And Gene Encoding The Protein And Gene
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/329840a0

    DOI

    http://dx.doi.org/10.1038/329840a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025629695

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/3313052


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antigens, Differentiation, T-Lymphocyte", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antigens, Ly", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antigens, Surface", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphocyte Function-Associated Antigen-1", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phospholipids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Biosynthesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Homology, Nucleic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Massachusetts General Hospital", 
              "id": "https://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Department of Molecular Biology, Massachusetts General Hospital, Boston 02114."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seed", 
            "givenName": "B", 
            "id": "sg:person.0745266311.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745266311.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0076-6879(83)91049-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003501127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1084/jem.162.3.890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005774937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1084/jem.165.3.677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011080986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/318062a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012918936", 
              "https://doi.org/10.1038/318062a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/318062a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012918936", 
              "https://doi.org/10.1038/318062a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/326400a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019140591", 
              "https://doi.org/10.1038/326400a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1084/jem.165.3.664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029188897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0968-0004(86)90009-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033698073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0968-0004(86)90009-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033698073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/329842a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034853453", 
              "https://doi.org/10.1038/329842a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/326298a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039895254", 
              "https://doi.org/10.1038/326298a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/323262a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042440855", 
              "https://doi.org/10.1038/323262a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/14.11.4683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053470686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2865810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062567822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3576199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062620059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078799984", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079494889", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079554431", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079795339", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1986.tb04526.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079947988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081615983", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081689947", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081691057", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-10", 
        "datePublishedReg": "1987-10-01", 
        "description": "Recently the human T cell erythrocyte receptor CD2 has been shown to bind human erythrocytes through LFA-3, a heavily glycosylated surface protein of broad tissue distribution. CD2-LFA-3 interactions are important for cytolytic conjugate formation, for thymocyte adhesion, and for T cell activation. A complementary DNA clone encoding LFA-3 was isolated using a complementary DNA clone encoding LFA-3 was isolated using a novel transient expression system of mouse cells. The cDNA encodes a phospholipid-linked membrane protein whose extracellular domain shares significant homology with CD2. As CD2 is homologous with the neural cell adhesion molecule NCAM in immunoglobulin-like domains, cellular adhesion molecules in both neural and lymphoid tissues could have a common ancestor.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/329840a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6142", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "329"
          }
        ], 
        "name": "An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2", 
        "pagination": "840-842", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7a19c538f041c5cd74b98e403db042e60e79cd3d9dff150e22373db677a5d780"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "3313052"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/329840a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025629695"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/329840a0", 
          "https://app.dimensions.ai/details/publication/pub.1025629695"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/329840a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/329840a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/329840a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/329840a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/329840a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      64 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/329840a0 schema:about N07f696d7b0c046f18b62669396740cff
    2 N0f2dc033addc43db803538e101ca5276
    3 N0ffc218ab01c48fd86ff861b6702388a
    4 N1aae5a22214d4e6988eeec276121122e
    5 N3a6dac127fd44482a4f3856760b50513
    6 N3e75d87ddc6448ff825100ca91506087
    7 N4216f2bd5a8641e6aef9d005ed472238
    8 N704d3d75b1cb41318a4d242704ff1665
    9 N7117e2c782924da6b80154f60fd06ba3
    10 N96db6a5c363f466bad3d18cea976b3af
    11 N9c84043a18944dd5aba1ecd1f9fc9ca7
    12 Nac7255b9b69947b0b9bd954a8b8e69dd
    13 Ndcaf5378a8db422f978a9bcfaa93a95b
    14 Ne4ca6d6f1e804ef8b4bdb347f8448cda
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 schema:author N05365cca54ff482f81ea8143c0198c3e
    18 schema:citation sg:pub.10.1038/318062a0
    19 sg:pub.10.1038/323262a0
    20 sg:pub.10.1038/326298a0
    21 sg:pub.10.1038/326400a0
    22 sg:pub.10.1038/329842a0
    23 https://app.dimensions.ai/details/publication/pub.1078799984
    24 https://app.dimensions.ai/details/publication/pub.1079494889
    25 https://app.dimensions.ai/details/publication/pub.1079554431
    26 https://app.dimensions.ai/details/publication/pub.1079795339
    27 https://app.dimensions.ai/details/publication/pub.1081615983
    28 https://app.dimensions.ai/details/publication/pub.1081689947
    29 https://app.dimensions.ai/details/publication/pub.1081691057
    30 https://doi.org/10.1002/j.1460-2075.1986.tb04526.x
    31 https://doi.org/10.1016/0968-0004(86)90009-5
    32 https://doi.org/10.1016/s0076-6879(83)91049-2
    33 https://doi.org/10.1084/jem.162.3.890
    34 https://doi.org/10.1084/jem.165.3.664
    35 https://doi.org/10.1084/jem.165.3.677
    36 https://doi.org/10.1093/nar/14.11.4683
    37 https://doi.org/10.1126/science.2865810
    38 https://doi.org/10.1126/science.3576199
    39 schema:datePublished 1987-10
    40 schema:datePublishedReg 1987-10-01
    41 schema:description Recently the human T cell erythrocyte receptor CD2 has been shown to bind human erythrocytes through LFA-3, a heavily glycosylated surface protein of broad tissue distribution. CD2-LFA-3 interactions are important for cytolytic conjugate formation, for thymocyte adhesion, and for T cell activation. A complementary DNA clone encoding LFA-3 was isolated using a complementary DNA clone encoding LFA-3 was isolated using a novel transient expression system of mouse cells. The cDNA encodes a phospholipid-linked membrane protein whose extracellular domain shares significant homology with CD2. As CD2 is homologous with the neural cell adhesion molecule NCAM in immunoglobulin-like domains, cellular adhesion molecules in both neural and lymphoid tissues could have a common ancestor.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf Nb40f12eb4c0e4cd49ee6990fcdeff72b
    46 Ne8bba1f83cf843d69111bbb3610fcfbf
    47 sg:journal.1018957
    48 schema:name An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2
    49 schema:pagination 840-842
    50 schema:productId N03fb8266a4a14355b93304b42b03d9cb
    51 N361a3a8b8a0647b89146321e2735f0d7
    52 N94593077595a477e83c6aa2279f63471
    53 Nbc21cd25dc42471da53a1480ed67ebca
    54 Nf55744c643bf441c93be0517dac5138a
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025629695
    56 https://doi.org/10.1038/329840a0
    57 schema:sdDatePublished 2019-04-11T00:55
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher Na2c7e5d4013446b2ac11dc57c9dae827
    60 schema:url http://www.nature.com/articles/329840a0
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N03fb8266a4a14355b93304b42b03d9cb schema:name readcube_id
    65 schema:value 7a19c538f041c5cd74b98e403db042e60e79cd3d9dff150e22373db677a5d780
    66 rdf:type schema:PropertyValue
    67 N05365cca54ff482f81ea8143c0198c3e rdf:first sg:person.0745266311.47
    68 rdf:rest rdf:nil
    69 N07f696d7b0c046f18b62669396740cff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Amino Acid Sequence
    71 rdf:type schema:DefinedTerm
    72 N0f2dc033addc43db803538e101ca5276 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Transcription, Genetic
    74 rdf:type schema:DefinedTerm
    75 N0ffc218ab01c48fd86ff861b6702388a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Antigens, Differentiation, T-Lymphocyte
    77 rdf:type schema:DefinedTerm
    78 N1aae5a22214d4e6988eeec276121122e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Base Sequence
    80 rdf:type schema:DefinedTerm
    81 N361a3a8b8a0647b89146321e2735f0d7 schema:name doi
    82 schema:value 10.1038/329840a0
    83 rdf:type schema:PropertyValue
    84 N3a6dac127fd44482a4f3856760b50513 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Antigens, Surface
    86 rdf:type schema:DefinedTerm
    87 N3e75d87ddc6448ff825100ca91506087 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Antigens, Ly
    89 rdf:type schema:DefinedTerm
    90 N4216f2bd5a8641e6aef9d005ed472238 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Sequence Homology, Nucleic Acid
    92 rdf:type schema:DefinedTerm
    93 N704d3d75b1cb41318a4d242704ff1665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Phospholipids
    95 rdf:type schema:DefinedTerm
    96 N7117e2c782924da6b80154f60fd06ba3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Humans
    98 rdf:type schema:DefinedTerm
    99 N94593077595a477e83c6aa2279f63471 schema:name dimensions_id
    100 schema:value pub.1025629695
    101 rdf:type schema:PropertyValue
    102 N96db6a5c363f466bad3d18cea976b3af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Nucleic Acid Hybridization
    104 rdf:type schema:DefinedTerm
    105 N9c84043a18944dd5aba1ecd1f9fc9ca7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Protein Biosynthesis
    107 rdf:type schema:DefinedTerm
    108 Na2c7e5d4013446b2ac11dc57c9dae827 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 Nac7255b9b69947b0b9bd954a8b8e69dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Lymphocyte Function-Associated Antigen-1
    112 rdf:type schema:DefinedTerm
    113 Nb40f12eb4c0e4cd49ee6990fcdeff72b schema:issueNumber 6142
    114 rdf:type schema:PublicationIssue
    115 Nbc21cd25dc42471da53a1480ed67ebca schema:name nlm_unique_id
    116 schema:value 0410462
    117 rdf:type schema:PropertyValue
    118 Ndcaf5378a8db422f978a9bcfaa93a95b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name DNA
    120 rdf:type schema:DefinedTerm
    121 Ne4ca6d6f1e804ef8b4bdb347f8448cda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Molecular Sequence Data
    123 rdf:type schema:DefinedTerm
    124 Ne8bba1f83cf843d69111bbb3610fcfbf schema:volumeNumber 329
    125 rdf:type schema:PublicationVolume
    126 Nf55744c643bf441c93be0517dac5138a schema:name pubmed_id
    127 schema:value 3313052
    128 rdf:type schema:PropertyValue
    129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Biological Sciences
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Biochemistry and Cell Biology
    134 rdf:type schema:DefinedTerm
    135 sg:journal.1018957 schema:issn 0090-0028
    136 1476-4687
    137 schema:name Nature
    138 rdf:type schema:Periodical
    139 sg:person.0745266311.47 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
    140 schema:familyName Seed
    141 schema:givenName B
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745266311.47
    143 rdf:type schema:Person
    144 sg:pub.10.1038/318062a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012918936
    145 https://doi.org/10.1038/318062a0
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/323262a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042440855
    148 https://doi.org/10.1038/323262a0
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/326298a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039895254
    151 https://doi.org/10.1038/326298a0
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/326400a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019140591
    154 https://doi.org/10.1038/326400a0
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/329842a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034853453
    157 https://doi.org/10.1038/329842a0
    158 rdf:type schema:CreativeWork
    159 https://app.dimensions.ai/details/publication/pub.1078799984 schema:CreativeWork
    160 https://app.dimensions.ai/details/publication/pub.1079494889 schema:CreativeWork
    161 https://app.dimensions.ai/details/publication/pub.1079554431 schema:CreativeWork
    162 https://app.dimensions.ai/details/publication/pub.1079795339 schema:CreativeWork
    163 https://app.dimensions.ai/details/publication/pub.1081615983 schema:CreativeWork
    164 https://app.dimensions.ai/details/publication/pub.1081689947 schema:CreativeWork
    165 https://app.dimensions.ai/details/publication/pub.1081691057 schema:CreativeWork
    166 https://doi.org/10.1002/j.1460-2075.1986.tb04526.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079947988
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/0968-0004(86)90009-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033698073
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s0076-6879(83)91049-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003501127
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1084/jem.162.3.890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005774937
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1084/jem.165.3.664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029188897
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1084/jem.165.3.677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011080986
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1093/nar/14.11.4683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053470686
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1126/science.2865810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567822
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1126/science.3576199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062620059
    183 rdf:type schema:CreativeWork
    184 https://www.grid.ac/institutes/grid.32224.35 schema:alternateName Massachusetts General Hospital
    185 schema:name Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...