Possible explanation of the γ-ray light curve and time variability in Cygnus X-3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-07

AUTHORS

R. J. Protheroe, T. Stanev

ABSTRACT

Very high-energy (VHE) and ultra high-energy (UHE) γ rays, at around 1 TeV and 1 PeV respectively, have been observed from Cygnus X-3 predominantly in two distinct regions of orbital phase. Here we investigate whether this can be understood in terms of the accretion disk corona model of White and Holt1 developed to explain the asymmetric light curve of the low-mass X-ray binary system X1822–371. In this model, two bulges in the outer rim of the accretion disk are required to fit the observed X-ray light curve and we find these could provide target material for the production of the γ rays observed at two distinct phases. We show also that magnetic steering effects may be inevitable in Cyg X-3 and may lead to a natural explanation to the observed variability in flux and phase of γ-ray emission. More... »

PAGES

136-139

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/328136a0

DOI

http://dx.doi.org/10.1038/328136a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006097127


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Adelaide, 5001, Adelaide, South Australia, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1010.0", 
          "name": [
            "Department of Physics, University of Adelaide, 5001, Adelaide, South Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Protheroe", 
        "givenName": "R. J.", 
        "id": "sg:person.015130022155.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130022155.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bartol Research Foundation of the Franklin Institute, University of Delaware, 19716, Newark, Delaware, USA", 
          "id": "http://www.grid.ac/institutes/grid.33489.35", 
          "name": [
            "Bartol Research Foundation of the Franklin Institute, University of Delaware, 19716, Newark, Delaware, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanev", 
        "givenName": "T.", 
        "id": "sg:person.01202250744.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202250744.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987-07", 
    "datePublishedReg": "1987-07-01", 
    "description": "Very high-energy (VHE) and ultra high-energy (UHE) \u03b3 rays, at around 1 TeV and 1 PeV respectively, have been observed from Cygnus X-3 predominantly in two distinct regions of orbital phase. Here we investigate whether this can be understood in terms of the accretion disk corona model of White and Holt1 developed to explain the asymmetric light curve of the low-mass X-ray binary system X1822\u2013371. In this model, two bulges in the outer rim of the accretion disk are required to fit the observed X-ray light curve and we find these could provide target material for the production of the \u03b3 rays observed at two distinct phases. We show also that magnetic steering effects may be inevitable in Cyg X-3 and may lead to a natural explanation to the observed variability in flux and phase of \u03b3-ray emission.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/328136a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6126", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "328"
      }
    ], 
    "keywords": [
      "ray light curves", 
      "light curves", 
      "Cygnus X-3", 
      "Cyg X-3", 
      "ray emission", 
      "accretion disk", 
      "orbital phase", 
      "corona model", 
      "target material", 
      "X-3", 
      "natural explanation", 
      "asymmetric light curves", 
      "steering effect", 
      "rays", 
      "time variability", 
      "Holt1", 
      "bulge", 
      "emission", 
      "PEVs", 
      "phase", 
      "disk", 
      "flux", 
      "outer rim", 
      "possible explanation", 
      "distinct regions", 
      "explanation", 
      "curves", 
      "observed variability", 
      "materials", 
      "distinct phases", 
      "region", 
      "model", 
      "effect", 
      "terms", 
      "production", 
      "rim", 
      "variability", 
      "whites", 
      "accretion disk corona model", 
      "disk corona model", 
      "ray binary system X1822", 
      "binary system X1822", 
      "system X1822", 
      "X1822", 
      "magnetic steering effects"
    ], 
    "name": "Possible explanation of the \u03b3-ray light curve and time variability in Cygnus X-3", 
    "pagination": "136-139", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006097127"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/328136a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/328136a0", 
      "https://app.dimensions.ai/details/publication/pub.1006097127"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_216.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/328136a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/328136a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/328136a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/328136a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/328136a0'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      71 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/328136a0 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nace64d43998047408df4ac497705da42
4 schema:datePublished 1987-07
5 schema:datePublishedReg 1987-07-01
6 schema:description Very high-energy (VHE) and ultra high-energy (UHE) γ rays, at around 1 TeV and 1 PeV respectively, have been observed from Cygnus X-3 predominantly in two distinct regions of orbital phase. Here we investigate whether this can be understood in terms of the accretion disk corona model of White and Holt1 developed to explain the asymmetric light curve of the low-mass X-ray binary system X1822–371. In this model, two bulges in the outer rim of the accretion disk are required to fit the observed X-ray light curve and we find these could provide target material for the production of the γ rays observed at two distinct phases. We show also that magnetic steering effects may be inevitable in Cyg X-3 and may lead to a natural explanation to the observed variability in flux and phase of γ-ray emission.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0f0175443c4746b18ba2ecf8fd3d0d42
11 N73133d61f4a844e788c9eaac4b77a0e1
12 sg:journal.1018957
13 schema:keywords Cyg X-3
14 Cygnus X-3
15 Holt1
16 PEVs
17 X-3
18 X1822
19 accretion disk
20 accretion disk corona model
21 asymmetric light curves
22 binary system X1822
23 bulge
24 corona model
25 curves
26 disk
27 disk corona model
28 distinct phases
29 distinct regions
30 effect
31 emission
32 explanation
33 flux
34 light curves
35 magnetic steering effects
36 materials
37 model
38 natural explanation
39 observed variability
40 orbital phase
41 outer rim
42 phase
43 possible explanation
44 production
45 ray binary system X1822
46 ray emission
47 ray light curves
48 rays
49 region
50 rim
51 steering effect
52 system X1822
53 target material
54 terms
55 time variability
56 variability
57 whites
58 schema:name Possible explanation of the γ-ray light curve and time variability in Cygnus X-3
59 schema:pagination 136-139
60 schema:productId N32cf0b17079345078f2af825c0720a8f
61 Nac8ec90cfebe4556b149bfa27377c7b8
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006097127
63 https://doi.org/10.1038/328136a0
64 schema:sdDatePublished 2021-12-01T19:07
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N74d3c8a9987b4348b06d02fb0923942b
67 schema:url https://doi.org/10.1038/328136a0
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0f0175443c4746b18ba2ecf8fd3d0d42 schema:volumeNumber 328
72 rdf:type schema:PublicationVolume
73 N12bd8edd9337470daf85a44deb36f5bc rdf:first sg:person.01202250744.65
74 rdf:rest rdf:nil
75 N32cf0b17079345078f2af825c0720a8f schema:name dimensions_id
76 schema:value pub.1006097127
77 rdf:type schema:PropertyValue
78 N73133d61f4a844e788c9eaac4b77a0e1 schema:issueNumber 6126
79 rdf:type schema:PublicationIssue
80 N74d3c8a9987b4348b06d02fb0923942b schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nac8ec90cfebe4556b149bfa27377c7b8 schema:name doi
83 schema:value 10.1038/328136a0
84 rdf:type schema:PropertyValue
85 Nace64d43998047408df4ac497705da42 rdf:first sg:person.015130022155.00
86 rdf:rest N12bd8edd9337470daf85a44deb36f5bc
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
91 schema:name Other Physical Sciences
92 rdf:type schema:DefinedTerm
93 sg:journal.1018957 schema:issn 0028-0836
94 1476-4687
95 schema:name Nature
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.01202250744.65 schema:affiliation grid-institutes:grid.33489.35
99 schema:familyName Stanev
100 schema:givenName T.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202250744.65
102 rdf:type schema:Person
103 sg:person.015130022155.00 schema:affiliation grid-institutes:grid.1010.0
104 schema:familyName Protheroe
105 schema:givenName R. J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130022155.00
107 rdf:type schema:Person
108 grid-institutes:grid.1010.0 schema:alternateName Department of Physics, University of Adelaide, 5001, Adelaide, South Australia, Australia
109 schema:name Department of Physics, University of Adelaide, 5001, Adelaide, South Australia, Australia
110 rdf:type schema:Organization
111 grid-institutes:grid.33489.35 schema:alternateName Bartol Research Foundation of the Franklin Institute, University of Delaware, 19716, Newark, Delaware, USA
112 schema:name Bartol Research Foundation of the Franklin Institute, University of Delaware, 19716, Newark, Delaware, USA
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...