Ontology type: schema:ScholarlyArticle
1987-04-01
AUTHORS ABSTRACTTropical cyclones rank with earthquakes as the major geophysical causes of loss of life and property1. It is therefore of practical as well as scientific interest to estimate the changes in tropical cyclone frequency and intensity that might result from short-term man-induced alterations of the climate2. In this spirit we use a simple Carnot cycle model to estimate the maximum intensity of tropical cyclones under the somewhat warmer conditions expected to result from increased atmospheric CO2 content. Estimates based on August mean conditions over the tropical oceans predicted by a general circulation model with twice the present CO2 content yield a 40–50% increase in the destructive potential of hurricanes. More... »
PAGES483-485
http://scigraph.springernature.com/pub.10.1038/326483a0
DOIhttp://dx.doi.org/10.1038/326483a0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1051941906
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA",
"id": "http://www.grid.ac/institutes/grid.116068.8",
"name": [
"Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
],
"type": "Organization"
},
"familyName": "Emanuel",
"givenName": "Kerry A.",
"id": "sg:person.01041012060.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041012060.20"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-642-81866-0_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037625772",
"https://doi.org/10.1007/978-3-642-81866-0_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-935704-28-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041934074",
"https://doi.org/10.1007/978-1-935704-28-7"
],
"type": "CreativeWork"
}
],
"datePublished": "1987-04-01",
"datePublishedReg": "1987-04-01",
"description": "Tropical cyclones rank with earthquakes as the major geophysical causes of loss of life and property1. It is therefore of practical as well as scientific interest to estimate the changes in tropical cyclone frequency and intensity that might result from short-term man-induced alterations of the climate2. In this spirit we use a simple Carnot cycle model to estimate the maximum intensity of tropical cyclones under the somewhat warmer conditions expected to result from increased atmospheric CO2 content. Estimates based on August mean conditions over the tropical oceans predicted by a general circulation model with twice the present CO2 content yield a 40\u201350% increase in the destructive potential of hurricanes.",
"genre": "article",
"id": "sg:pub.10.1038/326483a0",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6112",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "326"
}
],
"keywords": [
"tropical cyclones",
"tropical cyclone frequency",
"general circulation model",
"atmospheric CO2 content",
"man-induced alterations",
"Carnot cycle model",
"geophysical causes",
"cyclone frequency",
"tropical oceans",
"circulation model",
"hurricane intensity",
"mean conditions",
"warm conditions",
"CO2 content",
"cycle model",
"cyclones",
"maximum intensity",
"destructive potential",
"Ocean",
"earthquakes",
"climate",
"hurricanes",
"scientific interest",
"intensity",
"estimates",
"conditions",
"model",
"changes",
"content",
"alterations",
"increase",
"frequency",
"potential",
"loss",
"cause",
"dependence",
"yield",
"interest",
"life",
"spirit"
],
"name": "The dependence of hurricane intensity on climate",
"pagination": "483-485",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1051941906"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/326483a0"
]
}
],
"sameAs": [
"https://doi.org/10.1038/326483a0",
"https://app.dimensions.ai/details/publication/pub.1051941906"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_197.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/326483a0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/326483a0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/326483a0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/326483a0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/326483a0'
This table displays all metadata directly associated to this object as RDF triples.
105 TRIPLES
21 PREDICATES
66 URIs
56 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/326483a0 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | schema:author | Ne138442f64984b73817eb03f609ad118 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-935704-28-7 |
5 | ″ | ″ | sg:pub.10.1007/978-3-642-81866-0_1 |
6 | ″ | schema:datePublished | 1987-04-01 |
7 | ″ | schema:datePublishedReg | 1987-04-01 |
8 | ″ | schema:description | Tropical cyclones rank with earthquakes as the major geophysical causes of loss of life and property1. It is therefore of practical as well as scientific interest to estimate the changes in tropical cyclone frequency and intensity that might result from short-term man-induced alterations of the climate2. In this spirit we use a simple Carnot cycle model to estimate the maximum intensity of tropical cyclones under the somewhat warmer conditions expected to result from increased atmospheric CO2 content. Estimates based on August mean conditions over the tropical oceans predicted by a general circulation model with twice the present CO2 content yield a 40–50% increase in the destructive potential of hurricanes. |
9 | ″ | schema:genre | article |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N2bd6145a61d648fa9096d41bb576ab44 |
12 | ″ | ″ | N3c332bc60747491db9298f60767dfc5b |
13 | ″ | ″ | sg:journal.1018957 |
14 | ″ | schema:keywords | CO2 content |
15 | ″ | ″ | Carnot cycle model |
16 | ″ | ″ | Ocean |
17 | ″ | ″ | alterations |
18 | ″ | ″ | atmospheric CO2 content |
19 | ″ | ″ | cause |
20 | ″ | ″ | changes |
21 | ″ | ″ | circulation model |
22 | ″ | ″ | climate |
23 | ″ | ″ | conditions |
24 | ″ | ″ | content |
25 | ″ | ″ | cycle model |
26 | ″ | ″ | cyclone frequency |
27 | ″ | ″ | cyclones |
28 | ″ | ″ | dependence |
29 | ″ | ″ | destructive potential |
30 | ″ | ″ | earthquakes |
31 | ″ | ″ | estimates |
32 | ″ | ″ | frequency |
33 | ″ | ″ | general circulation model |
34 | ″ | ″ | geophysical causes |
35 | ″ | ″ | hurricane intensity |
36 | ″ | ″ | hurricanes |
37 | ″ | ″ | increase |
38 | ″ | ″ | intensity |
39 | ″ | ″ | interest |
40 | ″ | ″ | life |
41 | ″ | ″ | loss |
42 | ″ | ″ | man-induced alterations |
43 | ″ | ″ | maximum intensity |
44 | ″ | ″ | mean conditions |
45 | ″ | ″ | model |
46 | ″ | ″ | potential |
47 | ″ | ″ | scientific interest |
48 | ″ | ″ | spirit |
49 | ″ | ″ | tropical cyclone frequency |
50 | ″ | ″ | tropical cyclones |
51 | ″ | ″ | tropical oceans |
52 | ″ | ″ | warm conditions |
53 | ″ | ″ | yield |
54 | ″ | schema:name | The dependence of hurricane intensity on climate |
55 | ″ | schema:pagination | 483-485 |
56 | ″ | schema:productId | N812c5c57232340139009d0ef1335e2c1 |
57 | ″ | ″ | Nab4a6d379ca84737a5ac651f9f23a99a |
58 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051941906 |
59 | ″ | ″ | https://doi.org/10.1038/326483a0 |
60 | ″ | schema:sdDatePublished | 2022-08-04T16:51 |
61 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
62 | ″ | schema:sdPublisher | N8be3a391d61f4172b93002e41bf1dcb2 |
63 | ″ | schema:url | https://doi.org/10.1038/326483a0 |
64 | ″ | sgo:license | sg:explorer/license/ |
65 | ″ | sgo:sdDataset | articles |
66 | ″ | rdf:type | schema:ScholarlyArticle |
67 | N2bd6145a61d648fa9096d41bb576ab44 | schema:volumeNumber | 326 |
68 | ″ | rdf:type | schema:PublicationVolume |
69 | N3c332bc60747491db9298f60767dfc5b | schema:issueNumber | 6112 |
70 | ″ | rdf:type | schema:PublicationIssue |
71 | N812c5c57232340139009d0ef1335e2c1 | schema:name | dimensions_id |
72 | ″ | schema:value | pub.1051941906 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | N8be3a391d61f4172b93002e41bf1dcb2 | schema:name | Springer Nature - SN SciGraph project |
75 | ″ | rdf:type | schema:Organization |
76 | Nab4a6d379ca84737a5ac651f9f23a99a | schema:name | doi |
77 | ″ | schema:value | 10.1038/326483a0 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | Ne138442f64984b73817eb03f609ad118 | rdf:first | sg:person.01041012060.20 |
80 | ″ | rdf:rest | rdf:nil |
81 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
82 | ″ | schema:name | Earth Sciences |
83 | ″ | rdf:type | schema:DefinedTerm |
84 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
85 | ″ | schema:name | Atmospheric Sciences |
86 | ″ | rdf:type | schema:DefinedTerm |
87 | sg:journal.1018957 | schema:issn | 0028-0836 |
88 | ″ | ″ | 1476-4687 |
89 | ″ | schema:name | Nature |
90 | ″ | schema:publisher | Springer Nature |
91 | ″ | rdf:type | schema:Periodical |
92 | sg:person.01041012060.20 | schema:affiliation | grid-institutes:grid.116068.8 |
93 | ″ | schema:familyName | Emanuel |
94 | ″ | schema:givenName | Kerry A. |
95 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041012060.20 |
96 | ″ | rdf:type | schema:Person |
97 | sg:pub.10.1007/978-1-935704-28-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041934074 |
98 | ″ | ″ | https://doi.org/10.1007/978-1-935704-28-7 |
99 | ″ | rdf:type | schema:CreativeWork |
100 | sg:pub.10.1007/978-3-642-81866-0_1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037625772 |
101 | ″ | ″ | https://doi.org/10.1007/978-3-642-81866-0_1 |
102 | ″ | rdf:type | schema:CreativeWork |
103 | grid-institutes:grid.116068.8 | schema:alternateName | Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA |
104 | ″ | schema:name | Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA |
105 | ″ | rdf:type | schema:Organization |