Stable transformation of maize after gene transfer by electroporation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-02

AUTHORS

Michael E. Fromm, Loverine P. Taylor, Virginia Walbot

ABSTRACT

The graminaceous monocots, including the economically important cereals, seem to be refractory to infection by Agrobacterium tumefaciens, a natural gene transfer system that has been successfully exploited for transferring foreign genes into higher plants. Therefore, direct transfer techniques that are potentially applicable to all plant species have been developed using a few dicot and monocot species as model systems. One of these techniques, electroporation, uses electrical pulses of high field strength to permeabilize cell membranes reversibly so as to facilitate the transfer of DNA into cells. Electroporation-mediated gene transfer has resulted in stably transformed animal cells and transient gene expression in monocot and dicot plant cells. Here we report that electroporation-mediated DNA transfer of a chimaeric gene encoding neomycin phosphotransferase results in stably transformed maize cells that are resistant to kanamycin. More... »

PAGES

791-793

Journal

TITLE

Nature

ISSUE

6056

VOLUME

319

Related Patents

  • Homologous Recombination Mediated Transgene Deletion In Plant Cells
  • Dna Encoding A Plant Deoxyhypusine Synthase, A Plant Eukaryotic Initiation Factor 5a, Transgenic Plants And A Method For Controlling Senescence Programmed And Cell Death In Plants
  • Cell-Free Preparation Of Carbapenems
  • Compositions And Methods For Plant Transformation And Regeneration
  • Fertile Transgenic Maize Plants Containing A Gene Encoding The Pat Protein
  • Homologous Recombination-Mediated Transgene Alterations In Plants
  • Viral Expression Vectors
  • Nucleic Acid Encoding Delta-9 Desaturase
  • Transgenic Monocots Plants With Increased Glycine-Betaine Content
  • Methods And Compositions For The Production Of Stably Transformed Fertile Monocot Plants And Cells Thereof
  • Fertile Transgenic Corn Plants
  • Method For Production Of Plant Biological Products In Precocious Neomorphic Embryoids
  • High Lysine Fertile Transgenic Corn Plants
  • Plants Genetically Enhanced For Nutritional Quality
  • Buffer Solution For Electroporation And A Method Comprising The Use Of The Same
  • Fusion Proteins, Uses Thereof And Processes For Producing Same
  • Plant Centromere Compositions
  • Lettuce Variety Salmon
  • Organogenic Transformation And Regeneration
  • Cytochrome P450s And Uses Thereof
  • Compositions Comprising Fibrous Polypeptides And Polysaccharides
  • Adhesive Biopolymers And Uses Thereof
  • Methods For Decreasing Linolenic Acid Content In Seeds From Transgenic Plants Containing A Mutant Delta 15 Desaturase
  • Methods And Compositions For Transformation And Regeneration Of Maize
  • Compositions Comprising Fibrous Polypeptides And Polysaccharides
  • Methods And Compositions For The Production Of Stably Transformed, Fertile Monocot Plants And Cells Thereof
  • Chimeric Isoprenoid Synthases And Uses Thereof
  • Fertile Transgenic Corn Plants
  • Polynucleotides And Polypeptides Involved In Plant Fiber Development And Methods Of Using Same
  • Immunoadhesin Comprising A Chimeric Icam-1 Molecule Produced In A Plant
  • Polynucleotides And Polypeptides Involved In Plant Fiber Development And Methods Of Using Same
  • Methods And Compositions For The Production Of Stably Transformed, Fertile Monocot Plants And Cells Thereof
  • Methods For Control Of Flux In Metabolic Pathways Through Enzyme Relocation
  • Buffer Solution For Electroporation And A Method Comprising The Use Of The Same
  • Mucosal Or Enteral Administration Of Biologically Active Macromolecules
  • Plants Modified With Mini-Chromosomes
  • Methods And Compositions For Transformation Of Cereals Using Cultured Shoot Meristematic Tissue
  • Method For Preparing Barley Green Regenerative Tissue
  • Methods And Compositions For The Production Of Stably Transformed Fertile Monocot Plants And Cells Thereof
  • Methods And Compositions For The Production Of Stably Transformed, Fertile Monocot Plants And Cells Thereof
  • Anthranilate Synthase Gene And Method Of Use Thereof For Conferring Tryptophan Overproduction
  • Method For Producing Immunoglobulins Containing Protection Proteins And Their Use
  • Regeneration Of Both Plant Tissues And Transgenic Plant Tissues Using A New Plant Hormone, 5-Bromoindole-3-Acetic Acid
  • Dna Encoding A Plant Deoxyhypusine Synthase, A Plant Eukaryotic Initiation Factor 5a, Transgenic Plants And A Method For Controlling Senescence Programmed And Cell Death In Plants
  • Production Of Proteins In Plant Seeds
  • Process For Inducing Direct Somatic Embryogenesis In Immature Scutella Cells Of Pooideae, And Rapidly Regenerating Fertile Plants
  • Methods For Maize Transformation Coupled With Adventitious Regeneration Utilizing Nodal Section Explants And Mature Zygotic Embryos
  • Methods For Protecting Zea Mays Plants Against Pest Damage
  • Method For Introduction Of Disease And Pest Resistance Into Plants And Novel Genes Incorporated Into Plants Which Code Therefor
  • Homologous Recombination-Mediated Transgene Deletion In Plant Cells
  • Plants Genetically Enhanced For Disease Resistance
  • Chimeric Isoprenoid Synthases And Uses Thereof
  • Collagen Producing Plants And Methods Of Generating And Using Same
  • Compositions Comprising Fibrous Polypeptides And Polysaccharides
  • Chimeric Isoprenoid Synthases And Uses Thereof
  • Methods For Plant Regeneration, Transformation And Production Of Insect Resistant Transgenic Okra
  • Methods For Control Of Flux In Metabolic Pathways
  • Methods For Modifying Plant Endosperm
  • Recombinant Gibberellin Dna And Uses Thereof
  • Zea Mays Plants And Transgenic Zea Mays Plants Regenerated From Protoplasts Or Protoplast-Derived Cells
  • Fertile Transgenic Corn Plants
  • Plants Genetically Enhanced For Disease Resistance
  • Transgenic Maize With Increased Mannitol Content
  • Method Of Regenerating Fertile Transgenic Zea Mays Plants From Protoplasts
  • Fertile Glyphosate-Resistant Transgenic Corn Plants
  • Transgenic Plants With Altered Polyol Content
  • Compositions Comprising Fibrous Polypeptides And Polysaccharides
  • Plant Centromere Compositions
  • Anthranilate Synthase Gene And Method Of Use Thereof For Conferring Tryptophan Overproduction
  • Modified Pseudomonas Oleovorans Phac1 Nucleic Acids Encoding Bispecific Polyhydroxyalkanoate Polymerase
  • Polyhydroxyalkanoate Synthesis In Plants
  • Fertile Transgenic Corn Plants
  • A Process For Transforming Cells
  • Recombinant Cellular Iysate System For Producing A Product Of Interest
  • Process Of Producing Fertile Transgenic Zea Mays Plants And Progeny Comprising A Gene Encoding Phosphinothricin Acetyl Transferase
  • Method For Preparing Fertile Transgenic Corn Plants
  • Agrobacterium Mediated Transformation Of Germinating Plant Seeds
  • Plant Expression Constructs And Methods Of Utilizing Same
  • Plant Artificial Chromosome (Plac) Compositions And Methods
  • Viral Expression Vectors
  • Methods And Compositions For The Production Of Stably Transformed, Fertile Monocot Plants And Cells Thereof
  • Method For Producing Immunoglobulins Containing Protection Proteins In Plants And Their Use
  • Method Of Identifying Plant Cells Transformed With A Gene
  • Engineered Phosphoglucose Isomerase Proteins With A Protease Cleavage Site
  • Plant Defense Signal Peptides
  • Compositions And Methods For Plant Transformation And Regeneration
  • Isoforms Of Eif-5a: Senescence-Induced Elf5a; Wounding-Induced Eif-4a; Growth Eif-5a; And Dhs
  • Method For Producing Immunoglobulins Containing Protection Proteins In Plants And Their Use
  • Vaccines Expressed In Plants
  • Method Of Controlling Insect Larvae Comprising Feeding An Insecticidal Amount Of A Transgenic Maize Plant Expressing A Polypeptide Having Bt-Crystal Protein Toxic Properties
  • Method Of Maintaining Disease Stability In A Subject Having Gaucher's Disease
  • Immunoglobulins Containing Protection Proteins And Their Use
  • Starches Via Modification Of Expression Of Starch Biosynthetic Enzyme Genes
  • Insect Resistant Fertile Transgenic Corn Plants
  • Electric Field Mediated Dna Transformation Of Plant Cells And Organelles
  • Homologous Recombination-Mediated Transgene Deletion In Plant Cells
  • Polynucleotides And Polypeptides Involved In Plant Fiber Development And Methods Of Using Same
  • Plant Centromere Compositions
  • Method For Altering The Nutritional Content Of Plant Seed
  • Sucrose Synthase 3 Promoter From Rice And Uses Thereof
  • Oral Unit Dosage Forms And Uses Of Same For The Treatment Of Gaucher Disease
  • Centromere Sequences And Minichromosomes
  • Agrobacterium Tumefaciens Transformation Of Musa Species
  • Use Of Transposable Elements For Altering Gene Expression
  • Polynucleotides Encoding Canola Dhs And Antisense Polynucleotides Thereof
  • Mucosal Or Enteral Administration Of Biologically Active Macromolecules
  • Buffer Solution For Electroporation And A Method Comprising The Use Of The Same
  • Immuno-Molecules Containing Viral Proteins, Compositions Thereof And Methods Of Using
  • Cytochrome P450s And Uses Thereof
  • Method For The Biosynthesis Of Taurine Or Hypotaurine In Cells
  • Methods For Control Of Flux In Metabolic Pathways Through Protease Manipulation
  • Methods For Control Of Flux In Metabolic Pathways Through Enzyme Relocation
  • Plants Modified With Mini-Chromosomes
  • Collagen Producing Plants And Methods Of Generating And Using Same
  • Synergistic Method For Host Cell Transformation
  • Plant Defense Signal Peptides
  • Methods Of Producing Human Or Animal Food From Stably Transformed, Fertile Maize Plants
  • Method For Reduction Of Transgene Copy Number
  • Non-Reciprocal Recombination-Mediated Transgene Deletion In Transgenic Plants
  • Pollen-Mediated Method For Transformation Of Maize, Tomato Or Melon
  • Methods And Compositions For The Production Of Stably Transformed, Fertile Monocot Plants And Cells Thereof
  • Zea Mays Plants Regenerated From Protoplasts Or Protoplast-Derived Cells
  • Fertile Transgenic Corn Plants
  • Plant Genetic Transformation Methods And Transgenic Plants
  • Compositions Comprising Fibrous Polypeptides And Polysaccharides
  • Buffer Solution For Electroporation And A Method Comprising The Use Of The Same
  • Sorghum Centromere Sequences And Minichromosomes
  • Plants Modified With Mini-Chromosomes
  • A Method Of Obtaining High Methionine-Containing Corn Seeds, And Uses Thereof
  • Method For Plant Regeneration Of Okra
  • Cytochrome P450s And Uses Thereof
  • Methods And Compositions For The Production Of Stably Transformed, Fertile Monocot Plants And Cells Thereof
  • Microrna Compositions And Methods For Enhancing Plant Resistance To Abiotic Stress
  • Vaccines Expressed In Plants
  • Method For Preparing Fertile Transgenic Corn Plants
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/319791a0

    DOI

    http://dx.doi.org/10.1038/319791a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045509134

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/3005872


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Transposable Elements", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Resistance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kanamycin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kanamycin Kinase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phosphotransferases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transfection", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zea mays", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Fromm", 
            "givenName": "Michael E.", 
            "id": "sg:person.01011057717.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011057717.36"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Taylor", 
            "givenName": "Loverine P.", 
            "id": "sg:person.012362553142.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362553142.55"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Walbot", 
            "givenName": "Virginia", 
            "id": "sg:person.053026536.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.053026536.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0378-1119(84)90122-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000852526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(84)90122-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000852526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/11.2.369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007841328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/311763a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007940298", 
              "https://doi.org/10.1038/311763a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.81.12.3825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010484001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00330254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011873691", 
              "https://doi.org/10.1007/bf00330254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-2697(83)90418-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012973560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02860827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013580627", 
              "https://doi.org/10.1007/bf02860827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/9.12.2871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019399833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1285-1099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019880884", 
              "https://doi.org/10.1038/nbt1285-1099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(82)90023-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022043348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(82)90023-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022043348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/dvg.1020030302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022300110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/dvg.1020030302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022300110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1399-3054.1962.tb08052.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023703429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.81.22.7161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024498868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00276446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029853039", 
              "https://doi.org/10.1007/bf00276446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00276446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029853039", 
              "https://doi.org/10.1007/bf00276446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/304184a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030766221", 
              "https://doi.org/10.1038/304184a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(75)80083-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033296365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.80.15.4803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035204516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.82.17.5824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043915609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00330257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048143781", 
              "https://doi.org/10.1007/bf00330257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01868659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050341004", 
              "https://doi.org/10.1007/bf01868659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01868659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050341004", 
              "https://doi.org/10.1007/bf01868659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(82)90015-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050786151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(82)90015-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050786151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00330256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052000462", 
              "https://doi.org/10.1007/bf00330256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/296072a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052220023", 
              "https://doi.org/10.1038/296072a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.222.4625.815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062527870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1985.tb02312.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077057833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1983.tb01532.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077183600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1984.tb02201.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077183716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1984.tb02254.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077183728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-68315-2_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1081656917", 
              "https://doi.org/10.1007/978-3-642-68315-2_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081662082", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1982.tb01257.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1081682160"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-02", 
        "datePublishedReg": "1986-02-01", 
        "description": "The graminaceous monocots, including the economically important cereals, seem to be refractory to infection by Agrobacterium tumefaciens, a natural gene transfer system that has been successfully exploited for transferring foreign genes into higher plants. Therefore, direct transfer techniques that are potentially applicable to all plant species have been developed using a few dicot and monocot species as model systems. One of these techniques, electroporation, uses electrical pulses of high field strength to permeabilize cell membranes reversibly so as to facilitate the transfer of DNA into cells. Electroporation-mediated gene transfer has resulted in stably transformed animal cells and transient gene expression in monocot and dicot plant cells. Here we report that electroporation-mediated DNA transfer of a chimaeric gene encoding neomycin phosphotransferase results in stably transformed maize cells that are resistant to kanamycin.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/319791a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2682529", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2510450", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6056", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "319"
          }
        ], 
        "name": "Stable transformation of maize after gene transfer by electroporation", 
        "pagination": "791-793", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d8c7baefaf1afac3082bcb80415299b25f0c1abf8ff856a006ad8407604c9d44"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "3005872"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/319791a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045509134"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/319791a0", 
          "https://app.dimensions.ai/details/publication/pub.1045509134"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000426.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/319791a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/319791a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/319791a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/319791a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/319791a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    216 TRIPLES      21 PREDICATES      68 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/319791a0 schema:about N32e23912359d45da8be953ba2afa1f8a
    2 N3d1dee7843ae4bce843cfbc222b2d373
    3 N6c34fe918c4840239f3d38d26cf4a4e5
    4 N71f8a6df57664f3584ce942a571c9e4a
    5 N9ddeb76d70f04860ba61203196efa9c8
    6 Na3abb68e9ba0488d992d9001c02693d1
    7 Nbbd0c2e5830248e7b177b152db037937
    8 Nfe5b553cef9d4f41bcdd9b8266e87789
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N56c4115fff6944a1ac65df378c641d5e
    12 schema:citation sg:pub.10.1007/978-3-642-68315-2_12
    13 sg:pub.10.1007/bf00276446
    14 sg:pub.10.1007/bf00330254
    15 sg:pub.10.1007/bf00330256
    16 sg:pub.10.1007/bf00330257
    17 sg:pub.10.1007/bf01868659
    18 sg:pub.10.1007/bf02860827
    19 sg:pub.10.1038/296072a0
    20 sg:pub.10.1038/304184a0
    21 sg:pub.10.1038/311763a0
    22 sg:pub.10.1038/nbt1285-1099
    23 https://app.dimensions.ai/details/publication/pub.1081662082
    24 https://doi.org/10.1002/dvg.1020030302
    25 https://doi.org/10.1002/j.1460-2075.1982.tb01257.x
    26 https://doi.org/10.1002/j.1460-2075.1983.tb01532.x
    27 https://doi.org/10.1002/j.1460-2075.1984.tb02201.x
    28 https://doi.org/10.1002/j.1460-2075.1984.tb02254.x
    29 https://doi.org/10.1002/j.1460-2075.1985.tb02312.x
    30 https://doi.org/10.1016/0003-2697(83)90418-9
    31 https://doi.org/10.1016/0378-1119(82)90015-4
    32 https://doi.org/10.1016/0378-1119(82)90023-3
    33 https://doi.org/10.1016/0378-1119(84)90122-7
    34 https://doi.org/10.1016/s0022-2836(75)80083-0
    35 https://doi.org/10.1073/pnas.80.15.4803
    36 https://doi.org/10.1073/pnas.81.12.3825
    37 https://doi.org/10.1073/pnas.81.22.7161
    38 https://doi.org/10.1073/pnas.82.17.5824
    39 https://doi.org/10.1093/nar/11.2.369
    40 https://doi.org/10.1093/nar/9.12.2871
    41 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
    42 https://doi.org/10.1126/science.222.4625.815
    43 schema:datePublished 1986-02
    44 schema:datePublishedReg 1986-02-01
    45 schema:description The graminaceous monocots, including the economically important cereals, seem to be refractory to infection by Agrobacterium tumefaciens, a natural gene transfer system that has been successfully exploited for transferring foreign genes into higher plants. Therefore, direct transfer techniques that are potentially applicable to all plant species have been developed using a few dicot and monocot species as model systems. One of these techniques, electroporation, uses electrical pulses of high field strength to permeabilize cell membranes reversibly so as to facilitate the transfer of DNA into cells. Electroporation-mediated gene transfer has resulted in stably transformed animal cells and transient gene expression in monocot and dicot plant cells. Here we report that electroporation-mediated DNA transfer of a chimaeric gene encoding neomycin phosphotransferase results in stably transformed maize cells that are resistant to kanamycin.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf Ne868f31691cd4ae1b1ff348e1dfd3342
    50 Nf2e51114e0f8472891f85b439d47e09f
    51 sg:journal.1018957
    52 schema:name Stable transformation of maize after gene transfer by electroporation
    53 schema:pagination 791-793
    54 schema:productId N4519a7486bed472ba46fe42f4ad9a8cc
    55 N568613ae8e0d4bd89ac3e5d75e4518f4
    56 Na78b658c97aa4d0e9b75a09e0830b01a
    57 Naba1acbad80040dc95d3a28e92851848
    58 Nfdd7a1b1bbfc41a889c916d936b6ce3b
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045509134
    60 https://doi.org/10.1038/319791a0
    61 schema:sdDatePublished 2019-04-10T16:29
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N84bb0ae5decb43478e897dcf03566d61
    64 schema:url http://www.nature.com/articles/319791a0
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N32e23912359d45da8be953ba2afa1f8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Transfection
    70 rdf:type schema:DefinedTerm
    71 N3945a4f9b5b64e0eb565d6c7a6579714 rdf:first sg:person.053026536.87
    72 rdf:rest rdf:nil
    73 N3d1dee7843ae4bce843cfbc222b2d373 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name DNA
    75 rdf:type schema:DefinedTerm
    76 N4519a7486bed472ba46fe42f4ad9a8cc schema:name pubmed_id
    77 schema:value 3005872
    78 rdf:type schema:PropertyValue
    79 N568613ae8e0d4bd89ac3e5d75e4518f4 schema:name readcube_id
    80 schema:value d8c7baefaf1afac3082bcb80415299b25f0c1abf8ff856a006ad8407604c9d44
    81 rdf:type schema:PropertyValue
    82 N56c4115fff6944a1ac65df378c641d5e rdf:first sg:person.01011057717.36
    83 rdf:rest N9a8cc8b1e1ea495f8e467b50c909e7f0
    84 N6c34fe918c4840239f3d38d26cf4a4e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Kanamycin
    86 rdf:type schema:DefinedTerm
    87 N71f8a6df57664f3584ce942a571c9e4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name DNA Transposable Elements
    89 rdf:type schema:DefinedTerm
    90 N84bb0ae5decb43478e897dcf03566d61 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 N9a8cc8b1e1ea495f8e467b50c909e7f0 rdf:first sg:person.012362553142.55
    93 rdf:rest N3945a4f9b5b64e0eb565d6c7a6579714
    94 N9ddeb76d70f04860ba61203196efa9c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Drug Resistance
    96 rdf:type schema:DefinedTerm
    97 Na3abb68e9ba0488d992d9001c02693d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Kanamycin Kinase
    99 rdf:type schema:DefinedTerm
    100 Na78b658c97aa4d0e9b75a09e0830b01a schema:name nlm_unique_id
    101 schema:value 0410462
    102 rdf:type schema:PropertyValue
    103 Naba1acbad80040dc95d3a28e92851848 schema:name doi
    104 schema:value 10.1038/319791a0
    105 rdf:type schema:PropertyValue
    106 Nbbd0c2e5830248e7b177b152db037937 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Phosphotransferases
    108 rdf:type schema:DefinedTerm
    109 Ne868f31691cd4ae1b1ff348e1dfd3342 schema:volumeNumber 319
    110 rdf:type schema:PublicationVolume
    111 Nf2e51114e0f8472891f85b439d47e09f schema:issueNumber 6056
    112 rdf:type schema:PublicationIssue
    113 Nfdd7a1b1bbfc41a889c916d936b6ce3b schema:name dimensions_id
    114 schema:value pub.1045509134
    115 rdf:type schema:PropertyValue
    116 Nfe5b553cef9d4f41bcdd9b8266e87789 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Zea mays
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Biological Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Genetics
    124 rdf:type schema:DefinedTerm
    125 sg:grant.2510450 http://pending.schema.org/fundedItem sg:pub.10.1038/319791a0
    126 rdf:type schema:MonetaryGrant
    127 sg:grant.2682529 http://pending.schema.org/fundedItem sg:pub.10.1038/319791a0
    128 rdf:type schema:MonetaryGrant
    129 sg:journal.1018957 schema:issn 0090-0028
    130 1476-4687
    131 schema:name Nature
    132 rdf:type schema:Periodical
    133 sg:person.01011057717.36 schema:familyName Fromm
    134 schema:givenName Michael E.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011057717.36
    136 rdf:type schema:Person
    137 sg:person.012362553142.55 schema:familyName Taylor
    138 schema:givenName Loverine P.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362553142.55
    140 rdf:type schema:Person
    141 sg:person.053026536.87 schema:familyName Walbot
    142 schema:givenName Virginia
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.053026536.87
    144 rdf:type schema:Person
    145 sg:pub.10.1007/978-3-642-68315-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081656917
    146 https://doi.org/10.1007/978-3-642-68315-2_12
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf00276446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029853039
    149 https://doi.org/10.1007/bf00276446
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf00330254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011873691
    152 https://doi.org/10.1007/bf00330254
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf00330256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052000462
    155 https://doi.org/10.1007/bf00330256
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf00330257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048143781
    158 https://doi.org/10.1007/bf00330257
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/bf01868659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050341004
    161 https://doi.org/10.1007/bf01868659
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/bf02860827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013580627
    164 https://doi.org/10.1007/bf02860827
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/296072a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052220023
    167 https://doi.org/10.1038/296072a0
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/304184a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030766221
    170 https://doi.org/10.1038/304184a0
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/311763a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007940298
    173 https://doi.org/10.1038/311763a0
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nbt1285-1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019880884
    176 https://doi.org/10.1038/nbt1285-1099
    177 rdf:type schema:CreativeWork
    178 https://app.dimensions.ai/details/publication/pub.1081662082 schema:CreativeWork
    179 https://doi.org/10.1002/dvg.1020030302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022300110
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1002/j.1460-2075.1982.tb01257.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1081682160
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1002/j.1460-2075.1983.tb01532.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077183600
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1002/j.1460-2075.1984.tb02201.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077183716
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1002/j.1460-2075.1984.tb02254.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077183728
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1002/j.1460-2075.1985.tb02312.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077057833
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/0003-2697(83)90418-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012973560
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/0378-1119(82)90015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050786151
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/0378-1119(82)90023-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022043348
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0378-1119(84)90122-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000852526
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/s0022-2836(75)80083-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033296365
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1073/pnas.80.15.4803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035204516
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1073/pnas.81.12.3825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010484001
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1073/pnas.81.22.7161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024498868
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1073/pnas.82.17.5824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043915609
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1093/nar/11.2.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007841328
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1093/nar/9.12.2871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019399833
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023703429
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1126/science.222.4625.815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062527870
    216 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...