Identification of Na-Ca exchange current in single cardiac myocytes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-02

AUTHORS

S. Mechmann, L. Pott

ABSTRACT

In cardiac muscle the exchange of intracellular Ca2+ for extracellular Na+ is an important transport mechanism for regulation of the intracellular free Ca2+ concentration ([Ca]i) and hence the contractile strength of the heart (ref. 1 ; for reviews see refs 2–4). Due to its stoichiometry of ≥3:l Na+/Ca2+ (refs 3,5), Na-Ca exchange is supposed to generate a current across the cell membrane. It is thought that such a current may contribute to cardiac action potential and physiological or pathological pacemaker activity6,7. Although the occurrence of Na-Ca exchange is well documented, a membrane current generated by this transport has not been identified unequivocally. Previous attempts to detect such a current-in multicellular preparations, for example, by measuring small current differences after varying the extracellular ionic composition8, although providing evidence, did not rule out other possible interpretations. Here we demonstrate that a transient rise in [Ca]i caused by release of Ca from sarcoplasmic reticulum (SR) generates a membrane current in cardiac myocytes. The dependence of this current on the transmembrane gradients for Na+ and Ca2+ and on membrane potential meets the criteria for a current produced by electrogenic Na-Ca exchange. Cyclic activation of this current by release of Ca from the SR can cause maintained spontaneous activity, suggesting that Na-Ca exchange contributes to certain forms of cardiac pacemaking. More... »

PAGES

597-599

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/319597a0

DOI

http://dx.doi.org/10.1038/319597a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026526318

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2418367


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caffeine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Conductivity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Guinea Pigs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ion Channels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sodium", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Zellphysiologie, Ruhr-Universit\u00e4t Bochum, Postfach 102148, D-4630, Bochum, FRG", 
          "id": "http://www.grid.ac/institutes/grid.5570.7", 
          "name": [
            "Institut f\u00fcr Zellphysiologie, Ruhr-Universit\u00e4t Bochum, Postfach 102148, D-4630, Bochum, FRG"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mechmann", 
        "givenName": "S.", 
        "id": "sg:person.01241114355.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241114355.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Zellphysiologie, Ruhr-Universit\u00e4t Bochum, Postfach 102148, D-4630, Bochum, FRG", 
          "id": "http://www.grid.ac/institutes/grid.5570.7", 
          "name": [
            "Institut f\u00fcr Zellphysiologie, Ruhr-Universit\u00e4t Bochum, Postfach 102148, D-4630, Bochum, FRG"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pott", 
        "givenName": "L.", 
        "id": "sg:person.0710551536.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710551536.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-4082-9_82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051526909", 
          "https://doi.org/10.1007/978-1-4684-4082-9_82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/301248a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028082642", 
          "https://doi.org/10.1038/301248a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00656997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014806333", 
          "https://doi.org/10.1007/bf00656997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-7858-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014083884", 
          "https://doi.org/10.1007/978-1-4615-7858-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/294752a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018721316", 
          "https://doi.org/10.1038/294752a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-02", 
    "datePublishedReg": "1986-02-01", 
    "description": "In cardiac muscle the exchange of intracellular Ca2+ for extracellular Na+ is an important transport mechanism for regulation of the intracellular free Ca2+ concentration ([Ca]i) and hence the contractile strength of the heart (ref. 1 ; for reviews see refs 2\u20134). Due to its stoichiometry of \u22653:l Na+/Ca2+ (refs 3,5), Na-Ca exchange is supposed to generate a current across the cell membrane. It is thought that such a current may contribute to cardiac action potential and physiological or pathological pacemaker activity6,7. Although the occurrence of Na-Ca exchange is well documented, a membrane current generated by this transport has not been identified unequivocally. Previous attempts to detect such a current-in multicellular preparations, for example, by measuring small current differences after varying the extracellular ionic composition8, although providing evidence, did not rule out other possible interpretations. Here we demonstrate that a transient rise in [Ca]i caused by release of Ca from sarcoplasmic reticulum (SR) generates a membrane current in cardiac myocytes. The dependence of this current on the transmembrane gradients for Na+ and Ca2+ and on membrane potential meets the criteria for a current produced by electrogenic Na-Ca exchange. Cyclic activation of this current by release of Ca from the SR can cause maintained spontaneous activity, suggesting that Na-Ca exchange contributes to certain forms of cardiac pacemaking.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/319597a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6054", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "319"
      }
    ], 
    "keywords": [
      "cardiac myocytes", 
      "cell membrane", 
      "release of Ca", 
      "transmembrane gradient", 
      "sarcoplasmic reticulum", 
      "intracellular free Ca2", 
      "intracellular Ca2", 
      "cyclic activation", 
      "cardiac pacemaking", 
      "membrane", 
      "cardiac muscle", 
      "free Ca2", 
      "Ca2", 
      "cardiac action potential", 
      "exchange contributes", 
      "reticulum", 
      "regulation", 
      "transport mechanism", 
      "myocytes", 
      "membrane currents", 
      "activation", 
      "Na-Ca exchange", 
      "transient rise", 
      "release", 
      "identification", 
      "exchange", 
      "Ca", 
      "contributes", 
      "mechanism", 
      "stoichiometry", 
      "pacemaking", 
      "previous attempts", 
      "activity", 
      "transport", 
      "certain forms", 
      "gradient", 
      "muscle", 
      "contractile strength", 
      "evidence", 
      "occurrence", 
      "potential", 
      "single cardiac myocytes", 
      "form", 
      "action potentials", 
      "heart", 
      "concentration", 
      "differences", 
      "rise", 
      "electrogenic Na-Ca exchange", 
      "multicellular preparations", 
      "example", 
      "possible interpretations", 
      "preparation", 
      "attempt", 
      "current difference", 
      "pacemaker", 
      "current", 
      "interpretation", 
      "dependence", 
      "spontaneous activity", 
      "strength", 
      "criteria", 
      "important transport mechanism"
    ], 
    "name": "Identification of Na-Ca exchange current in single cardiac myocytes", 
    "pagination": "597-599", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026526318"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/319597a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2418367"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/319597a0", 
      "https://app.dimensions.ai/details/publication/pub.1026526318"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T21:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_192.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/319597a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/319597a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/319597a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/319597a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/319597a0'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      22 PREDICATES      106 URIs      93 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/319597a0 schema:about N00b2e2d1d6164bd7ba490b9b9ff3c143
2 N05573ec988694fe7aec084d84594adf3
3 N153503a284184dcc95af46f2e8d1bbff
4 N40bcf7751d3e4e95b457046277bfb673
5 N729e5db4150f4c2c90552e04eaba525a
6 N81790b9fb5ef40d9a473fa96127ff32d
7 N8b36762f32d048a9a09482caae03bfbd
8 N8c6a01383c5f48be86a81efde2dd44d4
9 N9c677f7f08304f088510bae9936d2290
10 N9e28ef04d61b4038aab9591c709a4b38
11 Nccb75a6f5b4e4111b376fed888885443
12 anzsrc-for:11
13 anzsrc-for:1116
14 schema:author N1313e55f1a5345acb1182dcc379b8de4
15 schema:citation sg:pub.10.1007/978-1-4615-7858-1_7
16 sg:pub.10.1007/978-1-4684-4082-9_82
17 sg:pub.10.1007/bf00656997
18 sg:pub.10.1038/294752a0
19 sg:pub.10.1038/301248a0
20 schema:datePublished 1986-02
21 schema:datePublishedReg 1986-02-01
22 schema:description In cardiac muscle the exchange of intracellular Ca2+ for extracellular Na+ is an important transport mechanism for regulation of the intracellular free Ca2+ concentration ([Ca]i) and hence the contractile strength of the heart (ref. 1 ; for reviews see refs 2–4). Due to its stoichiometry of ≥3:l Na+/Ca2+ (refs 3,5), Na-Ca exchange is supposed to generate a current across the cell membrane. It is thought that such a current may contribute to cardiac action potential and physiological or pathological pacemaker activity6,7. Although the occurrence of Na-Ca exchange is well documented, a membrane current generated by this transport has not been identified unequivocally. Previous attempts to detect such a current-in multicellular preparations, for example, by measuring small current differences after varying the extracellular ionic composition8, although providing evidence, did not rule out other possible interpretations. Here we demonstrate that a transient rise in [Ca]i caused by release of Ca from sarcoplasmic reticulum (SR) generates a membrane current in cardiac myocytes. The dependence of this current on the transmembrane gradients for Na+ and Ca2+ and on membrane potential meets the criteria for a current produced by electrogenic Na-Ca exchange. Cyclic activation of this current by release of Ca from the SR can cause maintained spontaneous activity, suggesting that Na-Ca exchange contributes to certain forms of cardiac pacemaking.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N94fc5b22439c494a81c1689081950e39
27 Nff3168217aca4b1ca271511507c39175
28 sg:journal.1018957
29 schema:keywords Ca
30 Ca2
31 Na-Ca exchange
32 action potentials
33 activation
34 activity
35 attempt
36 cardiac action potential
37 cardiac muscle
38 cardiac myocytes
39 cardiac pacemaking
40 cell membrane
41 certain forms
42 concentration
43 contractile strength
44 contributes
45 criteria
46 current
47 current difference
48 cyclic activation
49 dependence
50 differences
51 electrogenic Na-Ca exchange
52 evidence
53 example
54 exchange
55 exchange contributes
56 form
57 free Ca2
58 gradient
59 heart
60 identification
61 important transport mechanism
62 interpretation
63 intracellular Ca2
64 intracellular free Ca2
65 mechanism
66 membrane
67 membrane currents
68 multicellular preparations
69 muscle
70 myocytes
71 occurrence
72 pacemaker
73 pacemaking
74 possible interpretations
75 potential
76 preparation
77 previous attempts
78 regulation
79 release
80 release of Ca
81 reticulum
82 rise
83 sarcoplasmic reticulum
84 single cardiac myocytes
85 spontaneous activity
86 stoichiometry
87 strength
88 transient rise
89 transmembrane gradient
90 transport
91 transport mechanism
92 schema:name Identification of Na-Ca exchange current in single cardiac myocytes
93 schema:pagination 597-599
94 schema:productId N1cd9106f247443b593fd7430c9504c71
95 N4d5430a505bc4db897c80816812739a9
96 Ne5faa88faa0d4315a8c662dc1afacf29
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026526318
98 https://doi.org/10.1038/319597a0
99 schema:sdDatePublished 2022-06-01T21:59
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N19b96a0ec98447ec8bcb2602513d9af2
102 schema:url https://doi.org/10.1038/319597a0
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N00b2e2d1d6164bd7ba490b9b9ff3c143 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Heart
108 rdf:type schema:DefinedTerm
109 N05573ec988694fe7aec084d84594adf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Membrane Potentials
111 rdf:type schema:DefinedTerm
112 N1313e55f1a5345acb1182dcc379b8de4 rdf:first sg:person.01241114355.49
113 rdf:rest Nead5ab2dda714d0ab1edc4116091f8e1
114 N153503a284184dcc95af46f2e8d1bbff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Electric Conductivity
116 rdf:type schema:DefinedTerm
117 N19b96a0ec98447ec8bcb2602513d9af2 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N1cd9106f247443b593fd7430c9504c71 schema:name pubmed_id
120 schema:value 2418367
121 rdf:type schema:PropertyValue
122 N40bcf7751d3e4e95b457046277bfb673 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name In Vitro Techniques
124 rdf:type schema:DefinedTerm
125 N4d5430a505bc4db897c80816812739a9 schema:name dimensions_id
126 schema:value pub.1026526318
127 rdf:type schema:PropertyValue
128 N729e5db4150f4c2c90552e04eaba525a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Kinetics
130 rdf:type schema:DefinedTerm
131 N81790b9fb5ef40d9a473fa96127ff32d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Sodium
133 rdf:type schema:DefinedTerm
134 N8b36762f32d048a9a09482caae03bfbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Caffeine
136 rdf:type schema:DefinedTerm
137 N8c6a01383c5f48be86a81efde2dd44d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Calcium
139 rdf:type schema:DefinedTerm
140 N94fc5b22439c494a81c1689081950e39 schema:issueNumber 6054
141 rdf:type schema:PublicationIssue
142 N9c677f7f08304f088510bae9936d2290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Guinea Pigs
144 rdf:type schema:DefinedTerm
145 N9e28ef04d61b4038aab9591c709a4b38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Ion Channels
147 rdf:type schema:DefinedTerm
148 Nccb75a6f5b4e4111b376fed888885443 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Animals
150 rdf:type schema:DefinedTerm
151 Ne5faa88faa0d4315a8c662dc1afacf29 schema:name doi
152 schema:value 10.1038/319597a0
153 rdf:type schema:PropertyValue
154 Nead5ab2dda714d0ab1edc4116091f8e1 rdf:first sg:person.0710551536.08
155 rdf:rest rdf:nil
156 Nff3168217aca4b1ca271511507c39175 schema:volumeNumber 319
157 rdf:type schema:PublicationVolume
158 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
159 schema:name Medical and Health Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
162 schema:name Medical Physiology
163 rdf:type schema:DefinedTerm
164 sg:journal.1018957 schema:issn 0028-0836
165 1476-4687
166 schema:name Nature
167 schema:publisher Springer Nature
168 rdf:type schema:Periodical
169 sg:person.01241114355.49 schema:affiliation grid-institutes:grid.5570.7
170 schema:familyName Mechmann
171 schema:givenName S.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241114355.49
173 rdf:type schema:Person
174 sg:person.0710551536.08 schema:affiliation grid-institutes:grid.5570.7
175 schema:familyName Pott
176 schema:givenName L.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710551536.08
178 rdf:type schema:Person
179 sg:pub.10.1007/978-1-4615-7858-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014083884
180 https://doi.org/10.1007/978-1-4615-7858-1_7
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/978-1-4684-4082-9_82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051526909
183 https://doi.org/10.1007/978-1-4684-4082-9_82
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/bf00656997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014806333
186 https://doi.org/10.1007/bf00656997
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/294752a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018721316
189 https://doi.org/10.1038/294752a0
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/301248a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028082642
192 https://doi.org/10.1038/301248a0
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.5570.7 schema:alternateName Institut für Zellphysiologie, Ruhr-Universität Bochum, Postfach 102148, D-4630, Bochum, FRG
195 schema:name Institut für Zellphysiologie, Ruhr-Universität Bochum, Postfach 102148, D-4630, Bochum, FRG
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...