Computational vision and regularization theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-09

AUTHORS

Tomaso Poggio, Vincent Torre, Christof Koch

ABSTRACT

Descriptions of physical properties of visible surfaces, such as their distance and the presence of edges, must be recovered from the primary image data. Computational vision aims to understand how such descriptions can be obtained from inherently ambiguous and noisy data. A recent development in this field sees early vision as a set of ill-posed problems, which can be solved by the use of regularization methods. These lead to algorithms and parallel analog circuits that can solve ‘ill-posed problems’ and which are suggestive of neural equivalents in the brain. More... »

PAGES

314-319

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/317314a0

DOI

http://dx.doi.org/10.1038/317314a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016903244

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2413361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Psychological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Space Perception", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Symbolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vision, Ocular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Perception", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Artificial Intelligence Laboratory and Center for Biological Information Processing, Massachusetts Institute of Technology, 545 Technology Square, 02193, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Artificial Intelligence Laboratory and Center for Biological Information Processing, Massachusetts Institute of Technology, 545 Technology Square, 02193, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poggio", 
        "givenName": "Tomaso", 
        "id": "sg:person.01143125037.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143125037.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Artificial Intelligence Laboratory and Center for Biological Information Processing, Massachusetts Institute of Technology, 545 Technology Square, 02193, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Artificial Intelligence Laboratory and Center for Biological Information Processing, Massachusetts Institute of Technology, 545 Technology Square, 02193, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torre", 
        "givenName": "Vincent", 
        "id": "sg:person.01264507205.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264507205.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Artificial Intelligence Laboratory and Center for Biological Information Processing, Massachusetts Institute of Technology, 545 Technology Square, 02193, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Artificial Intelligence Laboratory and Center for Biological Information Processing, Massachusetts Institute of Technology, 545 Technology Square, 02193, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koch", 
        "givenName": "Christof", 
        "id": "sg:person.01147777443.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147777443.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/234393a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009973430", 
          "https://doi.org/10.1038/234393a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/306021a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032084801", 
          "https://doi.org/10.1038/306021a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5280-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942010", 
          "https://doi.org/10.1007/978-1-4612-5280-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1985-09", 
    "datePublishedReg": "1985-09-01", 
    "description": "Descriptions of physical properties of visible surfaces, such as their distance and the presence of edges, must be recovered from the primary image data. Computational vision aims to understand how such descriptions can be obtained from inherently ambiguous and noisy data. A recent development in this field sees early vision as a set of ill-posed problems, which can be solved by the use of regularization methods. These lead to algorithms and parallel analog circuits that can solve \u2018ill-posed problems\u2019 and which are suggestive of neural equivalents in the brain.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/317314a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6035", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "317"
      }
    ], 
    "keywords": [
      "computational vision", 
      "parallel analog circuits", 
      "primary image data", 
      "image data", 
      "noisy data", 
      "early vision", 
      "regularization theory", 
      "presence of edges", 
      "visible surface", 
      "vision", 
      "such descriptions", 
      "neural equivalent", 
      "regularization method", 
      "algorithm", 
      "analog circuits", 
      "set", 
      "data", 
      "recent developments", 
      "description", 
      "edge", 
      "method", 
      "problem", 
      "physical properties", 
      "distance", 
      "field", 
      "use", 
      "development", 
      "theory", 
      "circuit", 
      "properties", 
      "surface", 
      "equivalent", 
      "presence", 
      "brain"
    ], 
    "name": "Computational vision and regularization theory", 
    "pagination": "314-319", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016903244"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/317314a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2413361"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/317314a0", 
      "https://app.dimensions.ai/details/publication/pub.1016903244"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_186.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/317314a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/317314a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/317314a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/317314a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/317314a0'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      71 URIs      60 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/317314a0 schema:about N03e2ec34d88647cb8463bc443e315aad
2 N07949b4aed4b406baff98228969bfc15
3 N265e31c94a6b4ee6b35b0abf041be486
4 N3eaab408e7e64563a230b88656e53276
5 N577f1269f9ff4b89a05b2265dfbab27d
6 N81e77b13d701466b9a99923ab961cb1c
7 N9e8f5565700d485daf4e4a325b07177b
8 Nef0e39eaa08b43fc9ab03694ef597d70
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N0afaece254874e9e926c2e3fb03bfd3e
12 schema:citation sg:pub.10.1007/978-1-4612-5280-1
13 sg:pub.10.1038/234393a0
14 sg:pub.10.1038/306021a0
15 schema:datePublished 1985-09
16 schema:datePublishedReg 1985-09-01
17 schema:description Descriptions of physical properties of visible surfaces, such as their distance and the presence of edges, must be recovered from the primary image data. Computational vision aims to understand how such descriptions can be obtained from inherently ambiguous and noisy data. A recent development in this field sees early vision as a set of ill-posed problems, which can be solved by the use of regularization methods. These lead to algorithms and parallel analog circuits that can solve ‘ill-posed problems’ and which are suggestive of neural equivalents in the brain.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N7fc550439d454b2386fb0717b8affc7a
21 N8dcb42d3686c47849e20045f07870924
22 sg:journal.1018957
23 schema:keywords algorithm
24 analog circuits
25 brain
26 circuit
27 computational vision
28 data
29 description
30 development
31 distance
32 early vision
33 edge
34 equivalent
35 field
36 image data
37 method
38 neural equivalent
39 noisy data
40 parallel analog circuits
41 physical properties
42 presence
43 presence of edges
44 primary image data
45 problem
46 properties
47 recent developments
48 regularization method
49 regularization theory
50 set
51 such descriptions
52 surface
53 theory
54 use
55 visible surface
56 vision
57 schema:name Computational vision and regularization theory
58 schema:pagination 314-319
59 schema:productId N1f98f354b41c47ec9bdc9db8e6ef6827
60 N21d9e43eacee44018b8a4b22c1c8e071
61 N7f728758964d4329a05f2162c44c2cc9
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016903244
63 https://doi.org/10.1038/317314a0
64 schema:sdDatePublished 2022-09-02T15:46
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N8e1dc1eb0d9440858c0e3ce2bac4d2bb
67 schema:url https://doi.org/10.1038/317314a0
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N03e2ec34d88647cb8463bc443e315aad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Symbolism
73 rdf:type schema:DefinedTerm
74 N05cdef1991124ec5ab2157b3b4b8b9e2 rdf:first sg:person.01264507205.89
75 rdf:rest Na69542de360d4f03aaa99df65119a0b2
76 N07949b4aed4b406baff98228969bfc15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Vision, Ocular
78 rdf:type schema:DefinedTerm
79 N0afaece254874e9e926c2e3fb03bfd3e rdf:first sg:person.01143125037.55
80 rdf:rest N05cdef1991124ec5ab2157b3b4b8b9e2
81 N1f98f354b41c47ec9bdc9db8e6ef6827 schema:name dimensions_id
82 schema:value pub.1016903244
83 rdf:type schema:PropertyValue
84 N21d9e43eacee44018b8a4b22c1c8e071 schema:name doi
85 schema:value 10.1038/317314a0
86 rdf:type schema:PropertyValue
87 N265e31c94a6b4ee6b35b0abf041be486 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Humans
89 rdf:type schema:DefinedTerm
90 N3eaab408e7e64563a230b88656e53276 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Biological
92 rdf:type schema:DefinedTerm
93 N577f1269f9ff4b89a05b2265dfbab27d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Visual Perception
95 rdf:type schema:DefinedTerm
96 N7f728758964d4329a05f2162c44c2cc9 schema:name pubmed_id
97 schema:value 2413361
98 rdf:type schema:PropertyValue
99 N7fc550439d454b2386fb0717b8affc7a schema:issueNumber 6035
100 rdf:type schema:PublicationIssue
101 N81e77b13d701466b9a99923ab961cb1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Models, Psychological
103 rdf:type schema:DefinedTerm
104 N8dcb42d3686c47849e20045f07870924 schema:volumeNumber 317
105 rdf:type schema:PublicationVolume
106 N8e1dc1eb0d9440858c0e3ce2bac4d2bb schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N9e8f5565700d485daf4e4a325b07177b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Space Perception
110 rdf:type schema:DefinedTerm
111 Na69542de360d4f03aaa99df65119a0b2 rdf:first sg:person.01147777443.23
112 rdf:rest rdf:nil
113 Nef0e39eaa08b43fc9ab03694ef597d70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Stochastic Processes
115 rdf:type schema:DefinedTerm
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
120 schema:name Artificial Intelligence and Image Processing
121 rdf:type schema:DefinedTerm
122 sg:journal.1018957 schema:issn 0028-0836
123 1476-4687
124 schema:name Nature
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.01143125037.55 schema:affiliation grid-institutes:grid.116068.8
128 schema:familyName Poggio
129 schema:givenName Tomaso
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143125037.55
131 rdf:type schema:Person
132 sg:person.01147777443.23 schema:affiliation grid-institutes:grid.116068.8
133 schema:familyName Koch
134 schema:givenName Christof
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147777443.23
136 rdf:type schema:Person
137 sg:person.01264507205.89 schema:affiliation grid-institutes:grid.116068.8
138 schema:familyName Torre
139 schema:givenName Vincent
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264507205.89
141 rdf:type schema:Person
142 sg:pub.10.1007/978-1-4612-5280-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942010
143 https://doi.org/10.1007/978-1-4612-5280-1
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/234393a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009973430
146 https://doi.org/10.1038/234393a0
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/306021a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032084801
149 https://doi.org/10.1038/306021a0
150 rdf:type schema:CreativeWork
151 grid-institutes:grid.116068.8 schema:alternateName Artificial Intelligence Laboratory and Center for Biological Information Processing, Massachusetts Institute of Technology, 545 Technology Square, 02193, Cambridge, Massachusetts, USA
152 schema:name Artificial Intelligence Laboratory and Center for Biological Information Processing, Massachusetts Institute of Technology, 545 Technology Square, 02193, Cambridge, Massachusetts, USA
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...