Dynein arms are oscillating force generators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

Chikako Shingyoji, Hideo Higuchi, Misako Yoshimura, Eisaku Katayama, Toshio Yanagida

ABSTRACT

Eukaryotic flagella beat rhythmically1. Dynein is a protein that powers flagellar motion, and oscillation may be inherent to this protein2,3,4,5. Here we determine whether oscillation is a property of dynein arms themselves or whether oscillation requires an intact axoneme6, which is the central core of the flagellum and consists ofa regular array of microtubules. Using optical trapping nanometry7,8, we measured the force generated by a few dynein arms on an isolated doublet microtubule. When the dynein arms on the doublet microtubule contact a singlet microtubule and are activated by photolysis of caged ATP8, they generate a peak force of ∼6 pN and move the singlet microtubule over the doublet microtubule in a processive manner. The force and displacement oscillate with a peak-to-peak force and amplitude of ∼2 pN and ∼30 nm, respectively. The geometry of the interaction indicates that very few (possibly one) dynein arms are needed to generate the oscillation. The maximum frequency of the oscillation at 0.75 mM ATP is ∼70 Hz; this frequency decreases as the ATP concentration decreases. A similar oscillatory force is also generated by inner dynein arms alone on doublet microtubules that are depleted of outer dynein arms. The oscillation of the dynein arm may be a basic mechanism underlying flagellar beating. More... »

PAGES

711-714

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/31520

DOI

http://dx.doi.org/10.1038/31520

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015784711

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9641685


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine Triphosphate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dyneins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microtubules", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sea Urchins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sperm Tail", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Hongo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Hongo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shingyoji", 
        "givenName": "Chikako", 
        "id": "sg:person.046177456.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.046177456.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Metallurgy, Faculty of Engineering, Tohoku University, 980-8579, Aramaki-aza-Aoba, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Yanagida BioMotron Project, ERATO, JRDC, Senba-Higashi 2-4-14, 562-0035, Mino, Osaka, Japan", 
            "Department of Metallurgy, Faculty of Engineering, Tohoku University, 980-8579, Aramaki-aza-Aoba, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higuchi", 
        "givenName": "Hideo", 
        "id": "sg:person.015604164731.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015604164731.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Hongo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Hongo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshimura", 
        "givenName": "Misako", 
        "id": "sg:person.01213237540.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213237540.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Fine Morphology, Institute of Medical Science, University of Tokyo, 108-0071, Minato-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Fine Morphology, Institute of Medical Science, University of Tokyo, 108-0071, Minato-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katayama", 
        "givenName": "Eisaku", 
        "id": "sg:person.010754012631.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754012631.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, Osaka University Medical School, 565-0871, Suita, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Yanagida BioMotron Project, ERATO, JRDC, Senba-Higashi 2-4-14, 562-0035, Mino, Osaka, Japan", 
            "Department of Physiology, Osaka University Medical School, 565-0871, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagida", 
        "givenName": "Toshio", 
        "id": "sg:person.015141357621.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/37663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001696864", 
          "https://doi.org/10.1038/37663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/265269a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026341604", 
          "https://doi.org/10.1038/265269a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368113a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049237121", 
          "https://doi.org/10.1038/368113a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/340476a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027535873", 
          "https://doi.org/10.1038/340476a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365721a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026078609", 
          "https://doi.org/10.1038/365721a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-06", 
    "datePublishedReg": "1998-06-01", 
    "description": "Eukaryotic flagella beat rhythmically1. Dynein is a protein that powers flagellar motion, and oscillation may be inherent to this protein2,3,4,5. Here we determine whether oscillation is a property of dynein arms themselves or whether oscillation requires an intact axoneme6, which is the central core of the flagellum and consists ofa regular array of microtubules. Using optical trapping nanometry7,8, we measured the force generated by a few dynein arms on an isolated doublet microtubule. When the dynein arms on the doublet microtubule contact a singlet microtubule and are activated by photolysis of caged ATP8, they generate a peak force of \u223c6\u2009pN and move the singlet microtubule over the doublet microtubule in a processive manner. The force and displacement oscillate with a peak-to-peak force and amplitude of \u223c2\u2009pN and \u223c30\u2009nm, respectively. The geometry of the interaction indicates that very few (possibly one) dynein arms are needed to generate the oscillation. The maximum frequency of the oscillation at 0.75\u2009mM ATP is \u223c70\u2009Hz; this frequency decreases as the ATP concentration decreases. A similar oscillatory force is also generated by inner dynein arms alone on doublet microtubules that are depleted of outer dynein arms. The oscillation of the dynein arm may be a basic mechanism underlying flagellar beating.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/31520", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6686", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "393"
      }
    ], 
    "keywords": [
      "dynein arms", 
      "peak force", 
      "mM ATP", 
      "inner dynein arms", 
      "arm", 
      "ATP concentration", 
      "outer dynein arms", 
      "basic mechanisms", 
      "microtubules", 
      "flagellar beating", 
      "singlet microtubules", 
      "doublet microtubules", 
      "microtubule contacts", 
      "frequency", 
      "ATP", 
      "protein", 
      "concentration", 
      "manner", 
      "mechanism", 
      "flagellar motion", 
      "beating", 
      "contact", 
      "central core", 
      "flagella", 
      "Hz", 
      "dynein", 
      "force generator", 
      "amplitude", 
      "PN", 
      "interaction", 
      "peak", 
      "force", 
      "maximum frequency", 
      "oscillations", 
      "motion", 
      "eukaryotic flagella", 
      "array", 
      "properties", 
      "trapping", 
      "core", 
      "processive manner", 
      "generator", 
      "oscillates", 
      "regular array", 
      "photolysis", 
      "oscillatory forces", 
      "geometry", 
      "ATP8", 
      "optical trapping"
    ], 
    "name": "Dynein arms are oscillating force generators", 
    "pagination": "711-714", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015784711"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/31520"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9641685"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/31520", 
      "https://app.dimensions.ai/details/publication/pub.1015784711"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_296.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/31520"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/31520'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/31520'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/31520'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/31520'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      89 URIs      76 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/31520 schema:about N473bba8adf0542faa19e6e790512e02f
2 N81d02425a0f243e5977dc547578ed730
3 N89ea9319e1454927b7bdbbfebae052af
4 N926df0971c954bf68e8977fc4f929b6d
5 Ndad2909cfc2b41d2881a0e94be4c4596
6 Nea6341ecad6340a29b9db3a768af4870
7 Nebc64874c8c9405ab3cf6f7ad518bfcc
8 Nef568f60fcc14f21a6bd9bbdabd574ea
9 Nfe572bba3f1344558973390a4234bd93
10 anzsrc-for:02
11 anzsrc-for:0299
12 schema:author N657eb7f6aa27484c9ac236ebbdf4e783
13 schema:citation sg:pub.10.1038/265269a0
14 sg:pub.10.1038/340476a0
15 sg:pub.10.1038/365721a0
16 sg:pub.10.1038/368113a0
17 sg:pub.10.1038/37663
18 schema:datePublished 1998-06
19 schema:datePublishedReg 1998-06-01
20 schema:description Eukaryotic flagella beat rhythmically1. Dynein is a protein that powers flagellar motion, and oscillation may be inherent to this protein2,3,4,5. Here we determine whether oscillation is a property of dynein arms themselves or whether oscillation requires an intact axoneme6, which is the central core of the flagellum and consists ofa regular array of microtubules. Using optical trapping nanometry7,8, we measured the force generated by a few dynein arms on an isolated doublet microtubule. When the dynein arms on the doublet microtubule contact a singlet microtubule and are activated by photolysis of caged ATP8, they generate a peak force of ∼6 pN and move the singlet microtubule over the doublet microtubule in a processive manner. The force and displacement oscillate with a peak-to-peak force and amplitude of ∼2 pN and ∼30 nm, respectively. The geometry of the interaction indicates that very few (possibly one) dynein arms are needed to generate the oscillation. The maximum frequency of the oscillation at 0.75 mM ATP is ∼70 Hz; this frequency decreases as the ATP concentration decreases. A similar oscillatory force is also generated by inner dynein arms alone on doublet microtubules that are depleted of outer dynein arms. The oscillation of the dynein arm may be a basic mechanism underlying flagellar beating.
21 schema:genre article
22 schema:isAccessibleForFree false
23 schema:isPartOf N08409df9cbaa46438f931ce3fd544363
24 N263b881628f841c19a3117bfdf286afe
25 sg:journal.1018957
26 schema:keywords ATP
27 ATP concentration
28 ATP8
29 Hz
30 PN
31 amplitude
32 arm
33 array
34 basic mechanisms
35 beating
36 central core
37 concentration
38 contact
39 core
40 doublet microtubules
41 dynein
42 dynein arms
43 eukaryotic flagella
44 flagella
45 flagellar beating
46 flagellar motion
47 force
48 force generator
49 frequency
50 generator
51 geometry
52 inner dynein arms
53 interaction
54 mM ATP
55 manner
56 maximum frequency
57 mechanism
58 microtubule contacts
59 microtubules
60 motion
61 optical trapping
62 oscillates
63 oscillations
64 oscillatory forces
65 outer dynein arms
66 peak
67 peak force
68 photolysis
69 processive manner
70 properties
71 protein
72 regular array
73 singlet microtubules
74 trapping
75 schema:name Dynein arms are oscillating force generators
76 schema:pagination 711-714
77 schema:productId N3dbef8b04315477eb7139742d78d0a48
78 Nd05ddf7099cd4678ad9ac6cd9a1faa48
79 Nf5321ce8cb26405fa0dff705520259f6
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015784711
81 https://doi.org/10.1038/31520
82 schema:sdDatePublished 2022-10-01T06:30
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N4c4bebde5c564f7a96bff137be44d783
85 schema:url https://doi.org/10.1038/31520
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N08409df9cbaa46438f931ce3fd544363 schema:volumeNumber 393
90 rdf:type schema:PublicationVolume
91 N1fb08f95ab724ce2a5298eb3da82a330 rdf:first sg:person.015141357621.93
92 rdf:rest rdf:nil
93 N263b881628f841c19a3117bfdf286afe schema:issueNumber 6686
94 rdf:type schema:PublicationIssue
95 N37c971d9ae9c4c6b80a320420c828493 rdf:first sg:person.01213237540.20
96 rdf:rest Nbcac27e0de3849f0941c007c32e69637
97 N3dbef8b04315477eb7139742d78d0a48 schema:name pubmed_id
98 schema:value 9641685
99 rdf:type schema:PropertyValue
100 N473bba8adf0542faa19e6e790512e02f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Dyneins
102 rdf:type schema:DefinedTerm
103 N4c4bebde5c564f7a96bff137be44d783 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N657eb7f6aa27484c9ac236ebbdf4e783 rdf:first sg:person.046177456.90
106 rdf:rest Nbf6c88f61ec8408d879f23e1b859da8f
107 N81d02425a0f243e5977dc547578ed730 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Sperm Tail
109 rdf:type schema:DefinedTerm
110 N89ea9319e1454927b7bdbbfebae052af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Male
112 rdf:type schema:DefinedTerm
113 N926df0971c954bf68e8977fc4f929b6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Microtubules
115 rdf:type schema:DefinedTerm
116 Nbcac27e0de3849f0941c007c32e69637 rdf:first sg:person.010754012631.54
117 rdf:rest N1fb08f95ab724ce2a5298eb3da82a330
118 Nbf6c88f61ec8408d879f23e1b859da8f rdf:first sg:person.015604164731.98
119 rdf:rest N37c971d9ae9c4c6b80a320420c828493
120 Nd05ddf7099cd4678ad9ac6cd9a1faa48 schema:name doi
121 schema:value 10.1038/31520
122 rdf:type schema:PropertyValue
123 Ndad2909cfc2b41d2881a0e94be4c4596 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Sea Urchins
125 rdf:type schema:DefinedTerm
126 Nea6341ecad6340a29b9db3a768af4870 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Animals
128 rdf:type schema:DefinedTerm
129 Nebc64874c8c9405ab3cf6f7ad518bfcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Movement
131 rdf:type schema:DefinedTerm
132 Nef568f60fcc14f21a6bd9bbdabd574ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name In Vitro Techniques
134 rdf:type schema:DefinedTerm
135 Nf5321ce8cb26405fa0dff705520259f6 schema:name dimensions_id
136 schema:value pub.1015784711
137 rdf:type schema:PropertyValue
138 Nfe572bba3f1344558973390a4234bd93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Adenosine Triphosphate
140 rdf:type schema:DefinedTerm
141 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
142 schema:name Physical Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
145 schema:name Other Physical Sciences
146 rdf:type schema:DefinedTerm
147 sg:journal.1018957 schema:issn 0028-0836
148 1476-4687
149 schema:name Nature
150 schema:publisher Springer Nature
151 rdf:type schema:Periodical
152 sg:person.010754012631.54 schema:affiliation grid-institutes:grid.26999.3d
153 schema:familyName Katayama
154 schema:givenName Eisaku
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754012631.54
156 rdf:type schema:Person
157 sg:person.01213237540.20 schema:affiliation grid-institutes:grid.26999.3d
158 schema:familyName Yoshimura
159 schema:givenName Misako
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213237540.20
161 rdf:type schema:Person
162 sg:person.015141357621.93 schema:affiliation grid-institutes:grid.136593.b
163 schema:familyName Yanagida
164 schema:givenName Toshio
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93
166 rdf:type schema:Person
167 sg:person.015604164731.98 schema:affiliation grid-institutes:grid.69566.3a
168 schema:familyName Higuchi
169 schema:givenName Hideo
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015604164731.98
171 rdf:type schema:Person
172 sg:person.046177456.90 schema:affiliation grid-institutes:grid.26999.3d
173 schema:familyName Shingyoji
174 schema:givenName Chikako
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.046177456.90
176 rdf:type schema:Person
177 sg:pub.10.1038/265269a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026341604
178 https://doi.org/10.1038/265269a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/340476a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027535873
181 https://doi.org/10.1038/340476a0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/365721a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026078609
184 https://doi.org/10.1038/365721a0
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/368113a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049237121
187 https://doi.org/10.1038/368113a0
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/37663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001696864
190 https://doi.org/10.1038/37663
191 rdf:type schema:CreativeWork
192 grid-institutes:grid.136593.b schema:alternateName Department of Physiology, Osaka University Medical School, 565-0871, Suita, Osaka, Japan
193 schema:name Department of Physiology, Osaka University Medical School, 565-0871, Suita, Osaka, Japan
194 Yanagida BioMotron Project, ERATO, JRDC, Senba-Higashi 2-4-14, 562-0035, Mino, Osaka, Japan
195 rdf:type schema:Organization
196 grid-institutes:grid.26999.3d schema:alternateName Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Hongo, Tokyo, Japan
197 Department of Fine Morphology, Institute of Medical Science, University of Tokyo, 108-0071, Minato-ku, Tokyo, Japan
198 schema:name Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Hongo, Tokyo, Japan
199 Department of Fine Morphology, Institute of Medical Science, University of Tokyo, 108-0071, Minato-ku, Tokyo, Japan
200 rdf:type schema:Organization
201 grid-institutes:grid.69566.3a schema:alternateName Department of Metallurgy, Faculty of Engineering, Tohoku University, 980-8579, Aramaki-aza-Aoba, Sendai, Japan
202 schema:name Department of Metallurgy, Faculty of Engineering, Tohoku University, 980-8579, Aramaki-aza-Aoba, Sendai, Japan
203 Yanagida BioMotron Project, ERATO, JRDC, Senba-Higashi 2-4-14, 562-0035, Mino, Osaka, Japan
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...