Hypervariable ‘minisatellite’ regions in human DNA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-03

AUTHORS

Alec J. Jeffreys, Victoria Wilson, Swee Lay Thein

ABSTRACT

The human genome contains many dispersed tandem-repetitive ‘minisatellite’ regions detected via a shared 10–15-base pair ‘core’ sequence similar to the generalized recombination signal (χ) of Escherichia coli. Many minisatellites are highly polymorphic due to allelic variation in repeat copy number in the minisatellite. A probe based on a tandem-repeat of the core sequence can detect many highly variable loci simultaneously and can provide an individual-specific DNA ‘fingerprint’ of general use in human genetic analysis. More... »

PAGES

67-73

Journal

TITLE

Nature

ISSUE

6006

VOLUME

314

Related Patents

  • Y Chromosome Specific Nucleic Acid Probe And Method For Determining The Y Chromosome In Situ
  • Microfluidic Rotary Flow Reactor Matrix
  • Thermal Reaction Device And Method For Using The Same
  • For Use In Paternity And Forensic Testing, Genetic Disease Gene Mapping
  • Polymorphic Dna Markers In Bovidae
  • Genetic Analysis Of Nucleic Acid Sample; Detect Target Nucleotide Sequences, Generate Oligonucleotide Sequences, Classify Nucleotide Sequences In Sample
  • Methods And Devices For Electronic And Magnetic Sensing Of The Contents Of Microfluidic Flow Channels
  • Recirculating Fluidic Network And Methods For Using The Same
  • Conducting Microfluidic Analyses Using Appararus That Comprise Flow Channels Formed Within An Elastomeric Material; For Use In Thermocycling Applications Such As Nucleic Acid Amplification, Genotyping And Gene Expression Analysis; High Throughput Assays
  • Microfluidic Nucleic Acid Analysis
  • Detection Of Residual Host Cell Dna By Pcr
  • Multiplexed Method For The Identification And Quantitation Of Minor Alleles And Polymorphisms
  • Methods And Devices For Electronic Sensing
  • Dna Sequences And Cores, Digestion And Extraction
  • Microfluidic Device And Methods Of Using Same
  • Polynucleotide Sequence And Its Applications As Molecular Probe For Establishing Genetic Fingerprints Of Various Plant And Animal Species
  • Valve Comprises A Deflectable Elastomeric Polydimethylsiloxane Membrane For Separating A Microfluidic Flow Channel And A Microfluidic Control Channel; Conducting Nucleic Acid Amplification Reactions, Genotyping And Gene Expression Analyzes
  • Polynucleotide Probes
  • Synthetic Dna Probes
  • Hybridation Probe For Detection Of Polymorphic Nucleotide Sequences Contained In A Human Or Animal Dna Sample, Method For Detecting Polymorphic Dna Sequences Using Such A Probe, Its Biological Applications
  • Using Sample Of Dna Having Sequence With At Least One Repeat Unit Of 5 To 7 Base Pairs Repeated In Tandem At Least 2 Times, And Detecting That Sequence; Forensics; Paternity
  • Microfluidic Device And Methods Of Using Same
  • Measuring Concentration Of Reporter Labeled Cells
  • Primer Set For Genotyping Of Horse
  • Hybridization Probe For The Detection Of Polymorphic Nucleotide Sequences
  • Automatic Genotype Determination
  • Multiplex Amplification Of Short Tandem Repeat Loci
  • Thermal Reaction Device And Method For Using The Same
  • Materials And Methods For Identifying And Analyzing Intermediate Tandem Repeat Dna Markers
  • Microfluidic Device With Reaction Sites Configured For Blind Filling
  • Genetic Mapping
  • Linkage Analysis Of Genes With Diseases Using Difference Spectrum Analysis
  • Apparatus For Preparing Cdna Libraries From Single Cells
  • Genetic Diagnosis Of Torsion Dystonia
  • Methods And Devices For Electronic Sensing
  • Recirculating Fluidic Network And Methods For Using The Same
  • Microfluidic Particle-Analysis Systems
  • Thermal Reaction Device And Method For Using The Same
  • Microfluidic Particle-Analysis Systems
  • Microfluidic Nucleic Acid Analysis
  • Detection Of Nucleic Acids Of Cancer Cells, Hybridizing And Detection
  • Microfluidic Apparatus Comprising Elastomeric Layer And Biopolymer Membranes For Use In High Throughput Proteomics
  • Microfluidic Nucleic Acid Analysis
  • Microfluidic Devices And Methods Of Using Same
  • Microfluidic Devices And Methods Of Using Same
  • Method Of Characterizing Genomic Dna By Reference To A Genetic Variable
  • Correlating Loss Of Alleles To Clinical Outcome In Cancer Patients, Measuring Loss Of Alleles From Chromosomes Of Tumor Cells Which Allows Prognosis To Be Made Regarding Tumor Metastasis Or Recurrence, Mortality
  • Three Highly Informative Microsatellite Repeat Polymorphic Dna Markers
  • Thermal Reaction Device And Method For Using The Same
  • Include An Array Of Reaction Chambers Formed By Intersecting Vertical And Horizontal Flow Channels, With The Ability To Regulate Temperature At The Reaction Chambers; Methods Of Using The Same In Various Types Of Thermal Cycling Reactions
  • Materials And Methods For Achieving Differential Lysis Of Mixtures With The Aid Of Alkaline Lysis And Pressure Cycling Technology (Pct)
  • Hybridization Probe For The Detection Of Polymorphic Nucleotide Sequences
  • Polynucleotides Formed With Polymerase
  • Compositions And Methods For Analyzing Genomic Variation
  • A Method For The Simultaneous Determination Of Dna Sequence Variations At A Large Number Of Sites, And A Kit Therefor
  • Thermal Reaction Device And Method For Using The Same
  • Microfabricated Structure Having Parallel And Orthogonal Flow Channels Controlled By Row And Column Multiplexors
  • Multicompartment Apparatus For The Rapid Detection Of Dna, Proteins And Viruses
  • Highly Informative Microsatellite Repeat Polymorphic Dna Markers Twenty-[Seven]Six
  • Hypervariable Restriction Fragment Length Polymorphisms Within The Abr Gene
  • Compositions And Methods Useful For Genetic Analysis
  • Infrared Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis Of Macromolecules
  • Thermal Reaction Device And Method For Using The Same
  • Microfluidic Particle-Analysis Systems
  • Microfluidic Device And Methods Of Using Same
  • Improvements In Genetic Probes
  • Integrated Active Flux Microfluidic Devices And Methods
  • Integrated Active Flux Microfluidic Devices And Methods
  • Performance
  • Genetic Testing With Polymorphic Dna Markers Having Repeat Sequences To Provide A Rapid And Convenient High Resolution Process
  • Fragmentation-Based Methods And Systems For Sequence Variation Detection And Discovery
  • Microfluidic Device; Elastomeric Blocks; Patterned Photoresist Masks; Etching
  • Multiplex Amplification Of Short Tandem Repeat Loci
  • Nucleic Acid Amplification Using Microfluidic Devices
  • Apparatus For Manipulation And/Or Detection Of Cells And/Or Beads
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/314067a0

    DOI

    http://dx.doi.org/10.1038/314067a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047897100

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/3856104


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Satellite", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heterozygote", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pedigree", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombination, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Repetitive Sequences, Nucleic Acid", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK", 
              "id": "http://www.grid.ac/institutes/grid.9918.9", 
              "name": [
                "Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeffreys", 
            "givenName": "Alec J.", 
            "id": "sg:person.01010325224.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010325224.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK", 
              "id": "http://www.grid.ac/institutes/grid.9918.9", 
              "name": [
                "Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wilson", 
            "givenName": "Victoria", 
            "id": "sg:person.01163631601.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163631601.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MRC Molecular Haematology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, OX3 9DU, Headington, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.8348.7", 
              "name": [
                "MRC Molecular Haematology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, OX3 9DU, Headington, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thein", 
            "givenName": "Swee Lay", 
            "id": "sg:person.01274511101.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274511101.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/306234a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008727690", 
              "https://doi.org/10.1038/306234a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/300069a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034929435", 
              "https://doi.org/10.1038/300069a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/309172a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006555130", 
              "https://doi.org/10.1038/309172a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/309176a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037654366", 
              "https://doi.org/10.1038/309176a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/309170a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013017501", 
              "https://doi.org/10.1038/309170a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00275182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043397192", 
              "https://doi.org/10.1007/bf00275182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/295031a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017331230", 
              "https://doi.org/10.1038/295031a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/302033a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031650611", 
              "https://doi.org/10.1038/302033a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/305779a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049589192", 
              "https://doi.org/10.1038/305779a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/299111a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030897036", 
              "https://doi.org/10.1038/299111a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-03", 
        "datePublishedReg": "1985-03-01", 
        "description": "The human genome contains many dispersed tandem-repetitive \u2018minisatellite\u2019 regions detected via a shared 10\u201315-base pair \u2018core\u2019 sequence similar to the generalized recombination signal (\u03c7) of Escherichia coli. Many minisatellites are highly polymorphic due to allelic variation in repeat copy number in the minisatellite. A probe based on a tandem-repeat of the core sequence can detect many highly variable loci simultaneously and can provide an individual-specific DNA \u2018fingerprint\u2019 of general use in human genetic analysis.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/314067a0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6006", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "314"
          }
        ], 
        "keywords": [
          "human genetic analysis", 
          "repeat copy number", 
          "human genome", 
          "variable loci", 
          "individual-specific DNA", 
          "recombination signals", 
          "allelic variation", 
          "genetic analysis", 
          "core sequence", 
          "copy number", 
          "minisatellites", 
          "human DNA", 
          "Escherichia coli", 
          "DNA", 
          "sequence", 
          "genome", 
          "loci", 
          "coli", 
          "region", 
          "probe", 
          "variation", 
          "fingerprints", 
          "pairs", 
          "signals", 
          "general use", 
          "analysis", 
          "number", 
          "core", 
          "use"
        ], 
        "name": "Hypervariable \u2018minisatellite\u2019 regions in human DNA", 
        "pagination": "67-73", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047897100"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/314067a0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "3856104"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/314067a0", 
          "https://app.dimensions.ai/details/publication/pub.1047897100"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_211.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/314067a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/314067a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/314067a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/314067a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/314067a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    199 TRIPLES      21 PREDICATES      78 URIs      60 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/314067a0 schema:about N037dbbc9b1f94409a82c9af7b79c430e
    2 N1e9d32398af84954b7e370406209b39a
    3 N43955b79ddae40e09c7694b3a3c19649
    4 N4b66ec51ea2f444fae1d9e741a389112
    5 N59ca689ba0c74facbc24be158bfa242d
    6 N5aa4ca9377bb4a58a489ce69ba47c201
    7 N710a27ff8d384de2a2bed675eefae39d
    8 N965fc5aee4c749b786253c328f203bda
    9 N9854fac9c2af4b1a966f84f9bd28fdb9
    10 Na33013f289dd4959a51784212771044f
    11 Na43275ec8ff043cea38f379b944c9342
    12 Nb2b10d167f7e4936a18b79c81a0c9d12
    13 Nfdf77afd220b42c2915a668153e417b0
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author Nd1d48c0d65d748c0b0352604c5bd115e
    17 schema:citation sg:pub.10.1007/bf00275182
    18 sg:pub.10.1038/295031a0
    19 sg:pub.10.1038/299111a0
    20 sg:pub.10.1038/300069a0
    21 sg:pub.10.1038/302033a0
    22 sg:pub.10.1038/305779a0
    23 sg:pub.10.1038/306234a0
    24 sg:pub.10.1038/309170a0
    25 sg:pub.10.1038/309172a0
    26 sg:pub.10.1038/309176a0
    27 schema:datePublished 1985-03
    28 schema:datePublishedReg 1985-03-01
    29 schema:description The human genome contains many dispersed tandem-repetitive ‘minisatellite’ regions detected via a shared 10–15-base pair ‘core’ sequence similar to the generalized recombination signal (χ) of Escherichia coli. Many minisatellites are highly polymorphic due to allelic variation in repeat copy number in the minisatellite. A probe based on a tandem-repeat of the core sequence can detect many highly variable loci simultaneously and can provide an individual-specific DNA ‘fingerprint’ of general use in human genetic analysis.
    30 schema:genre article
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N03431f73782949e0a052de7a763aa650
    33 Nc00235e563d64be78a12d152763ab997
    34 sg:journal.1018957
    35 schema:keywords DNA
    36 Escherichia coli
    37 allelic variation
    38 analysis
    39 coli
    40 copy number
    41 core
    42 core sequence
    43 fingerprints
    44 general use
    45 genetic analysis
    46 genome
    47 human DNA
    48 human genetic analysis
    49 human genome
    50 individual-specific DNA
    51 loci
    52 minisatellites
    53 number
    54 pairs
    55 probe
    56 recombination signals
    57 region
    58 repeat copy number
    59 sequence
    60 signals
    61 use
    62 variable loci
    63 variation
    64 schema:name Hypervariable ‘minisatellite’ regions in human DNA
    65 schema:pagination 67-73
    66 schema:productId N170e8b864de045d69eb94dd14d137ff6
    67 N91ec1efeee3b4e4ab24158c49a03a6f6
    68 Nd3747926e93c4fd18456c573fbec8f0c
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047897100
    70 https://doi.org/10.1038/314067a0
    71 schema:sdDatePublished 2022-11-24T20:47
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N0f4619e212aa48e39dbcd5429401805e
    74 schema:url https://doi.org/10.1038/314067a0
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N03431f73782949e0a052de7a763aa650 schema:issueNumber 6006
    79 rdf:type schema:PublicationIssue
    80 N037dbbc9b1f94409a82c9af7b79c430e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Recombination, Genetic
    82 rdf:type schema:DefinedTerm
    83 N0f4619e212aa48e39dbcd5429401805e schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N170e8b864de045d69eb94dd14d137ff6 schema:name pubmed_id
    86 schema:value 3856104
    87 rdf:type schema:PropertyValue
    88 N1e9d32398af84954b7e370406209b39a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Mutation
    90 rdf:type schema:DefinedTerm
    91 N43955b79ddae40e09c7694b3a3c19649 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Polymorphism, Genetic
    93 rdf:type schema:DefinedTerm
    94 N4b66ec51ea2f444fae1d9e741a389112 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Pedigree
    96 rdf:type schema:DefinedTerm
    97 N59ca689ba0c74facbc24be158bfa242d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Heterozygote
    99 rdf:type schema:DefinedTerm
    100 N5aa4ca9377bb4a58a489ce69ba47c201 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Genetic Engineering
    102 rdf:type schema:DefinedTerm
    103 N710a27ff8d384de2a2bed675eefae39d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Base Sequence
    105 rdf:type schema:DefinedTerm
    106 N91ec1efeee3b4e4ab24158c49a03a6f6 schema:name doi
    107 schema:value 10.1038/314067a0
    108 rdf:type schema:PropertyValue
    109 N965fc5aee4c749b786253c328f203bda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name DNA, Satellite
    111 rdf:type schema:DefinedTerm
    112 N9854fac9c2af4b1a966f84f9bd28fdb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Alleles
    114 rdf:type schema:DefinedTerm
    115 N9fd2f92701dc4a8fb12f1e47f654cf54 rdf:first sg:person.01163631601.02
    116 rdf:rest Ne27cd3d657ad485f9db2af4efbc048be
    117 Na33013f289dd4959a51784212771044f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Repetitive Sequences, Nucleic Acid
    119 rdf:type schema:DefinedTerm
    120 Na43275ec8ff043cea38f379b944c9342 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Humans
    122 rdf:type schema:DefinedTerm
    123 Nb2b10d167f7e4936a18b79c81a0c9d12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Genetic Variation
    125 rdf:type schema:DefinedTerm
    126 Nc00235e563d64be78a12d152763ab997 schema:volumeNumber 314
    127 rdf:type schema:PublicationVolume
    128 Nd1d48c0d65d748c0b0352604c5bd115e rdf:first sg:person.01010325224.35
    129 rdf:rest N9fd2f92701dc4a8fb12f1e47f654cf54
    130 Nd3747926e93c4fd18456c573fbec8f0c schema:name dimensions_id
    131 schema:value pub.1047897100
    132 rdf:type schema:PropertyValue
    133 Ne27cd3d657ad485f9db2af4efbc048be rdf:first sg:person.01274511101.91
    134 rdf:rest rdf:nil
    135 Nfdf77afd220b42c2915a668153e417b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Nucleic Acid Hybridization
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Biological Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Genetics
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1018957 schema:issn 0028-0836
    145 1476-4687
    146 schema:name Nature
    147 schema:publisher Springer Nature
    148 rdf:type schema:Periodical
    149 sg:person.01010325224.35 schema:affiliation grid-institutes:grid.9918.9
    150 schema:familyName Jeffreys
    151 schema:givenName Alec J.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010325224.35
    153 rdf:type schema:Person
    154 sg:person.01163631601.02 schema:affiliation grid-institutes:grid.9918.9
    155 schema:familyName Wilson
    156 schema:givenName Victoria
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163631601.02
    158 rdf:type schema:Person
    159 sg:person.01274511101.91 schema:affiliation grid-institutes:grid.8348.7
    160 schema:familyName Thein
    161 schema:givenName Swee Lay
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274511101.91
    163 rdf:type schema:Person
    164 sg:pub.10.1007/bf00275182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043397192
    165 https://doi.org/10.1007/bf00275182
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/295031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017331230
    168 https://doi.org/10.1038/295031a0
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/299111a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030897036
    171 https://doi.org/10.1038/299111a0
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/300069a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034929435
    174 https://doi.org/10.1038/300069a0
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/302033a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031650611
    177 https://doi.org/10.1038/302033a0
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/305779a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049589192
    180 https://doi.org/10.1038/305779a0
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/306234a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008727690
    183 https://doi.org/10.1038/306234a0
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/309170a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013017501
    186 https://doi.org/10.1038/309170a0
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/309172a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006555130
    189 https://doi.org/10.1038/309172a0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/309176a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037654366
    192 https://doi.org/10.1038/309176a0
    193 rdf:type schema:CreativeWork
    194 grid-institutes:grid.8348.7 schema:alternateName MRC Molecular Haematology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, OX3 9DU, Headington, Oxford, UK
    195 schema:name MRC Molecular Haematology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, OX3 9DU, Headington, Oxford, UK
    196 rdf:type schema:Organization
    197 grid-institutes:grid.9918.9 schema:alternateName Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK
    198 schema:name Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK
    199 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...