Hypervariable ‘minisatellite’ regions in human DNA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-03

AUTHORS

Alec J. Jeffreys, Victoria Wilson, Swee Lay Thein

ABSTRACT

The human genome contains many dispersed tandem-repetitive ‘minisatellite’ regions detected via a shared 10–15-base pair ‘core’ sequence similar to the generalized recombination signal (χ) of Escherichia coli. Many minisatellites are highly polymorphic due to allelic variation in repeat copy number in the minisatellite. A probe based on a tandem-repeat of the core sequence can detect many highly variable loci simultaneously and can provide an individual-specific DNA ‘fingerprint’ of general use in human genetic analysis. More... »

PAGES

67-73

Journal

TITLE

Nature

ISSUE

6006

VOLUME

314

Related Patents

  • For Use In Paternity And Forensic Testing, Genetic Disease Gene Mapping
  • Microfluidic Rotary Flow Reactor Matrix
  • Methods And Devices For Electronic And Magnetic Sensing Of The Contents Of Microfluidic Flow Channels
  • Genetic Analysis Of Nucleic Acid Sample; Detect Target Nucleotide Sequences, Generate Oligonucleotide Sequences, Classify Nucleotide Sequences In Sample
  • Y Chromosome Specific Nucleic Acid Probe And Method For Determining The Y Chromosome In Situ
  • Polymorphic Dna Markers In Bovidae
  • Thermal Reaction Device And Method For Using The Same
  • Recirculating Fluidic Network And Methods For Using The Same
  • Valve Comprises A Deflectable Elastomeric Polydimethylsiloxane Membrane For Separating A Microfluidic Flow Channel And A Microfluidic Control Channel; Conducting Nucleic Acid Amplification Reactions, Genotyping And Gene Expression Analyzes
  • Primer Set For Genotyping Of Horse
  • Polynucleotide Probes
  • Synthetic Dna Probes
  • Microfluidic Nucleic Acid Analysis
  • Polynucleotide Sequence And Its Applications As Molecular Probe For Establishing Genetic Fingerprints Of Various Plant And Animal Species
  • Microfluidic Device And Methods Of Using Same
  • Multiplexed Method For The Identification And Quantitation Of Minor Alleles And Polymorphisms
  • Microfluidic Device And Methods Of Using Same
  • Automatic Genotype Determination
  • Detection Of Residual Host Cell Dna By Pcr
  • Methods And Devices For Electronic Sensing
  • Hybridation Probe For Detection Of Polymorphic Nucleotide Sequences Contained In A Human Or Animal Dna Sample, Method For Detecting Polymorphic Dna Sequences Using Such A Probe, Its Biological Applications
  • Measuring Concentration Of Reporter Labeled Cells
  • Conducting Microfluidic Analyses Using Appararus That Comprise Flow Channels Formed Within An Elastomeric Material; For Use In Thermocycling Applications Such As Nucleic Acid Amplification, Genotyping And Gene Expression Analysis; High Throughput Assays
  • Dna Sequences And Cores, Digestion And Extraction
  • Hybridization Probe For The Detection Of Polymorphic Nucleotide Sequences
  • Using Sample Of Dna Having Sequence With At Least One Repeat Unit Of 5 To 7 Base Pairs Repeated In Tandem At Least 2 Times, And Detecting That Sequence; Forensics; Paternity
  • Multiplex Amplification Of Short Tandem Repeat Loci
  • Genetic Diagnosis Of Torsion Dystonia
  • Thermal Reaction Device And Method For Using The Same
  • Microfluidic Nucleic Acid Analysis
  • Recirculating Fluidic Network And Methods For Using The Same
  • Apparatus For Preparing Cdna Libraries From Single Cells
  • Methods And Devices For Electronic Sensing
  • Genetic Mapping
  • Materials And Methods For Identifying And Analyzing Intermediate Tandem Repeat Dna Markers
  • Thermal Reaction Device And Method For Using The Same
  • Microfluidic Particle-Analysis Systems
  • Detection Of Nucleic Acids Of Cancer Cells, Hybridizing And Detection
  • Microfluidic Device With Reaction Sites Configured For Blind Filling
  • Microfluidic Particle-Analysis Systems
  • Linkage Analysis Of Genes With Diseases Using Difference Spectrum Analysis
  • Three Highly Informative Microsatellite Repeat Polymorphic Dna Markers
  • Correlating Loss Of Alleles To Clinical Outcome In Cancer Patients, Measuring Loss Of Alleles From Chromosomes Of Tumor Cells Which Allows Prognosis To Be Made Regarding Tumor Metastasis Or Recurrence, Mortality
  • Include An Array Of Reaction Chambers Formed By Intersecting Vertical And Horizontal Flow Channels, With The Ability To Regulate Temperature At The Reaction Chambers; Methods Of Using The Same In Various Types Of Thermal Cycling Reactions
  • A Method For The Simultaneous Determination Of Dna Sequence Variations At A Large Number Of Sites, And A Kit Therefor
  • Thermal Reaction Device And Method For Using The Same
  • Microfluidic Devices And Methods Of Using Same
  • Compositions And Methods For Analyzing Genomic Variation
  • Microfluidic Apparatus Comprising Elastomeric Layer And Biopolymer Membranes For Use In High Throughput Proteomics
  • Microfluidic Nucleic Acid Analysis
  • Method Of Characterizing Genomic Dna By Reference To A Genetic Variable
  • Materials And Methods For Achieving Differential Lysis Of Mixtures With The Aid Of Alkaline Lysis And Pressure Cycling Technology (Pct)
  • Hybridization Probe For The Detection Of Polymorphic Nucleotide Sequences
  • Microfluidic Devices And Methods Of Using Same
  • Polynucleotides Formed With Polymerase
  • Multiplex Amplification Of Short Tandem Repeat Loci
  • Microfluidic Particle-Analysis Systems
  • Multicompartment Apparatus For The Rapid Detection Of Dna, Proteins And Viruses
  • Microfluidic Device And Methods Of Using Same
  • Nucleic Acid Amplification Using Microfluidic Devices
  • Thermal Reaction Device And Method For Using The Same
  • Thermal Reaction Device And Method For Using The Same
  • Improvements In Genetic Probes
  • Highly Informative Microsatellite Repeat Polymorphic Dna Markers Twenty-[Seven]Six
  • Genetic Testing With Polymorphic Dna Markers Having Repeat Sequences To Provide A Rapid And Convenient High Resolution Process
  • Microfabricated Structure Having Parallel And Orthogonal Flow Channels Controlled By Row And Column Multiplexors
  • Microfluidic Device; Elastomeric Blocks; Patterned Photoresist Masks; Etching
  • Performance
  • Integrated Active Flux Microfluidic Devices And Methods
  • Fragmentation-Based Methods And Systems For Sequence Variation Detection And Discovery
  • Integrated Active Flux Microfluidic Devices And Methods
  • Apparatus For Manipulation And/Or Detection Of Cells And/Or Beads
  • Hypervariable Restriction Fragment Length Polymorphisms Within The Abr Gene
  • Compositions And Methods Useful For Genetic Analysis
  • Infrared Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis Of Macromolecules
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/314067a0

    DOI

    http://dx.doi.org/10.1038/314067a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047897100

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/3856104


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Satellite", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heterozygote", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pedigree", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombination, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Repetitive Sequences, Nucleic Acid", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK", 
              "id": "http://www.grid.ac/institutes/grid.9918.9", 
              "name": [
                "Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeffreys", 
            "givenName": "Alec J.", 
            "id": "sg:person.01010325224.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010325224.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK", 
              "id": "http://www.grid.ac/institutes/grid.9918.9", 
              "name": [
                "Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wilson", 
            "givenName": "Victoria", 
            "id": "sg:person.01163631601.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163631601.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MRC Molecular Haematology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, OX3 9DU, Headington, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.8348.7", 
              "name": [
                "MRC Molecular Haematology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, OX3 9DU, Headington, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thein", 
            "givenName": "Swee Lay", 
            "id": "sg:person.01274511101.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274511101.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/306234a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008727690", 
              "https://doi.org/10.1038/306234a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/309170a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013017501", 
              "https://doi.org/10.1038/309170a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/295031a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017331230", 
              "https://doi.org/10.1038/295031a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/309172a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006555130", 
              "https://doi.org/10.1038/309172a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/302033a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031650611", 
              "https://doi.org/10.1038/302033a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/305779a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049589192", 
              "https://doi.org/10.1038/305779a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/300069a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034929435", 
              "https://doi.org/10.1038/300069a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00275182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043397192", 
              "https://doi.org/10.1007/bf00275182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/309176a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037654366", 
              "https://doi.org/10.1038/309176a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/299111a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030897036", 
              "https://doi.org/10.1038/299111a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-03", 
        "datePublishedReg": "1985-03-01", 
        "description": "The human genome contains many dispersed tandem-repetitive \u2018minisatellite\u2019 regions detected via a shared 10\u201315-base pair \u2018core\u2019 sequence similar to the generalized recombination signal (\u03c7) of Escherichia coli. Many minisatellites are highly polymorphic due to allelic variation in repeat copy number in the minisatellite. A probe based on a tandem-repeat of the core sequence can detect many highly variable loci simultaneously and can provide an individual-specific DNA \u2018fingerprint\u2019 of general use in human genetic analysis.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/314067a0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6006", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "314"
          }
        ], 
        "keywords": [
          "human genetic analysis", 
          "repeat copy number", 
          "human genome", 
          "variable loci", 
          "individual-specific DNA", 
          "recombination signals", 
          "allelic variation", 
          "genetic analysis", 
          "core sequence", 
          "copy number", 
          "minisatellites", 
          "human DNA", 
          "Escherichia coli", 
          "DNA", 
          "sequence", 
          "genome", 
          "loci", 
          "coli", 
          "region", 
          "probe", 
          "variation", 
          "fingerprints", 
          "pairs", 
          "signals", 
          "general use", 
          "analysis", 
          "number", 
          "core", 
          "use"
        ], 
        "name": "Hypervariable \u2018minisatellite\u2019 regions in human DNA", 
        "pagination": "67-73", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047897100"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/314067a0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "3856104"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/314067a0", 
          "https://app.dimensions.ai/details/publication/pub.1047897100"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_211.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/314067a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/314067a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/314067a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/314067a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/314067a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    199 TRIPLES      21 PREDICATES      78 URIs      60 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/314067a0 schema:about N12192d28767e4ecbba762d7384312b2e
    2 N16347cb1ac1d4f1bba5aee583e1f9d7d
    3 N3fc104eb240741e3a3350869f27ac34a
    4 N42160cbb7567405391c35417af6c017e
    5 N4d6c732fb3da4624866392fdc38bddf3
    6 N9330494babed4eda82f2ba32f49663a9
    7 Na1a4450eac6a49519f3ac1af96bf9130
    8 Nc3f9a1a7f4bc413f8c8ae36c69dc6c8d
    9 Nd9987e8687eb46ddb954cf487c39e253
    10 Ne7d07f6dc6374680b350e983167c2af8
    11 Ne9cadb1269da401fad5ad9080a060d60
    12 Nf8da82796c43457a9b424fe6c8d94799
    13 Nf9fc289d5761444faaa888e74ce869d2
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author N29a32c8b2f214597b574870a16218a40
    17 schema:citation sg:pub.10.1007/bf00275182
    18 sg:pub.10.1038/295031a0
    19 sg:pub.10.1038/299111a0
    20 sg:pub.10.1038/300069a0
    21 sg:pub.10.1038/302033a0
    22 sg:pub.10.1038/305779a0
    23 sg:pub.10.1038/306234a0
    24 sg:pub.10.1038/309170a0
    25 sg:pub.10.1038/309172a0
    26 sg:pub.10.1038/309176a0
    27 schema:datePublished 1985-03
    28 schema:datePublishedReg 1985-03-01
    29 schema:description The human genome contains many dispersed tandem-repetitive ‘minisatellite’ regions detected via a shared 10–15-base pair ‘core’ sequence similar to the generalized recombination signal (χ) of Escherichia coli. Many minisatellites are highly polymorphic due to allelic variation in repeat copy number in the minisatellite. A probe based on a tandem-repeat of the core sequence can detect many highly variable loci simultaneously and can provide an individual-specific DNA ‘fingerprint’ of general use in human genetic analysis.
    30 schema:genre article
    31 schema:isAccessibleForFree false
    32 schema:isPartOf Nad0245e1f402452e9af79549b870087d
    33 Ne46ac9b7bac9404ba1dee83eccdc9830
    34 sg:journal.1018957
    35 schema:keywords DNA
    36 Escherichia coli
    37 allelic variation
    38 analysis
    39 coli
    40 copy number
    41 core
    42 core sequence
    43 fingerprints
    44 general use
    45 genetic analysis
    46 genome
    47 human DNA
    48 human genetic analysis
    49 human genome
    50 individual-specific DNA
    51 loci
    52 minisatellites
    53 number
    54 pairs
    55 probe
    56 recombination signals
    57 region
    58 repeat copy number
    59 sequence
    60 signals
    61 use
    62 variable loci
    63 variation
    64 schema:name Hypervariable ‘minisatellite’ regions in human DNA
    65 schema:pagination 67-73
    66 schema:productId N0890468b10464909820f0f9723274e0c
    67 N0e879e8e3e434c35b1fe246f7ebc7722
    68 N5d8c28090c3e4b96bcc83838f14ec4af
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047897100
    70 https://doi.org/10.1038/314067a0
    71 schema:sdDatePublished 2022-12-01T06:19
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N58390a19b49e4b8684b7f5a4c3482c8c
    74 schema:url https://doi.org/10.1038/314067a0
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N0890468b10464909820f0f9723274e0c schema:name dimensions_id
    79 schema:value pub.1047897100
    80 rdf:type schema:PropertyValue
    81 N0e879e8e3e434c35b1fe246f7ebc7722 schema:name doi
    82 schema:value 10.1038/314067a0
    83 rdf:type schema:PropertyValue
    84 N12192d28767e4ecbba762d7384312b2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Polymorphism, Genetic
    86 rdf:type schema:DefinedTerm
    87 N16347cb1ac1d4f1bba5aee583e1f9d7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name DNA, Satellite
    89 rdf:type schema:DefinedTerm
    90 N29a32c8b2f214597b574870a16218a40 rdf:first sg:person.01010325224.35
    91 rdf:rest Na0a6d95eb7eb49f68548e58ea808328d
    92 N3fc104eb240741e3a3350869f27ac34a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Repetitive Sequences, Nucleic Acid
    94 rdf:type schema:DefinedTerm
    95 N42160cbb7567405391c35417af6c017e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Genetic Variation
    97 rdf:type schema:DefinedTerm
    98 N4d6c732fb3da4624866392fdc38bddf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Nucleic Acid Hybridization
    100 rdf:type schema:DefinedTerm
    101 N58390a19b49e4b8684b7f5a4c3482c8c schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 N5d8c28090c3e4b96bcc83838f14ec4af schema:name pubmed_id
    104 schema:value 3856104
    105 rdf:type schema:PropertyValue
    106 N7e3515c863b34a108c12225cf7fb5071 rdf:first sg:person.01274511101.91
    107 rdf:rest rdf:nil
    108 N9330494babed4eda82f2ba32f49663a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Heterozygote
    110 rdf:type schema:DefinedTerm
    111 Na0a6d95eb7eb49f68548e58ea808328d rdf:first sg:person.01163631601.02
    112 rdf:rest N7e3515c863b34a108c12225cf7fb5071
    113 Na1a4450eac6a49519f3ac1af96bf9130 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Humans
    115 rdf:type schema:DefinedTerm
    116 Nad0245e1f402452e9af79549b870087d schema:volumeNumber 314
    117 rdf:type schema:PublicationVolume
    118 Nc3f9a1a7f4bc413f8c8ae36c69dc6c8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Base Sequence
    120 rdf:type schema:DefinedTerm
    121 Nd9987e8687eb46ddb954cf487c39e253 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Recombination, Genetic
    123 rdf:type schema:DefinedTerm
    124 Ne46ac9b7bac9404ba1dee83eccdc9830 schema:issueNumber 6006
    125 rdf:type schema:PublicationIssue
    126 Ne7d07f6dc6374680b350e983167c2af8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Mutation
    128 rdf:type schema:DefinedTerm
    129 Ne9cadb1269da401fad5ad9080a060d60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Alleles
    131 rdf:type schema:DefinedTerm
    132 Nf8da82796c43457a9b424fe6c8d94799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Genetic Engineering
    134 rdf:type schema:DefinedTerm
    135 Nf9fc289d5761444faaa888e74ce869d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Pedigree
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Biological Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Genetics
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1018957 schema:issn 0028-0836
    145 1476-4687
    146 schema:name Nature
    147 schema:publisher Springer Nature
    148 rdf:type schema:Periodical
    149 sg:person.01010325224.35 schema:affiliation grid-institutes:grid.9918.9
    150 schema:familyName Jeffreys
    151 schema:givenName Alec J.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010325224.35
    153 rdf:type schema:Person
    154 sg:person.01163631601.02 schema:affiliation grid-institutes:grid.9918.9
    155 schema:familyName Wilson
    156 schema:givenName Victoria
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163631601.02
    158 rdf:type schema:Person
    159 sg:person.01274511101.91 schema:affiliation grid-institutes:grid.8348.7
    160 schema:familyName Thein
    161 schema:givenName Swee Lay
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274511101.91
    163 rdf:type schema:Person
    164 sg:pub.10.1007/bf00275182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043397192
    165 https://doi.org/10.1007/bf00275182
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/295031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017331230
    168 https://doi.org/10.1038/295031a0
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/299111a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030897036
    171 https://doi.org/10.1038/299111a0
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/300069a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034929435
    174 https://doi.org/10.1038/300069a0
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/302033a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031650611
    177 https://doi.org/10.1038/302033a0
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/305779a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049589192
    180 https://doi.org/10.1038/305779a0
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/306234a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008727690
    183 https://doi.org/10.1038/306234a0
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/309170a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013017501
    186 https://doi.org/10.1038/309170a0
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/309172a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006555130
    189 https://doi.org/10.1038/309172a0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/309176a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037654366
    192 https://doi.org/10.1038/309176a0
    193 rdf:type schema:CreativeWork
    194 grid-institutes:grid.8348.7 schema:alternateName MRC Molecular Haematology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, OX3 9DU, Headington, Oxford, UK
    195 schema:name MRC Molecular Haematology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, OX3 9DU, Headington, Oxford, UK
    196 rdf:type schema:Organization
    197 grid-institutes:grid.9918.9 schema:alternateName Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK
    198 schema:name Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK
    199 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...