Electronic liquid-crystal phases of a doped Mott insulator View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-06

AUTHORS

S. A. Kivelson, E. Fradkin, V. J. Emery

ABSTRACT

The character of the ground state of an antiferromagnetic insulator is fundamentally altered following addition of even a small amount of charge1. The added charge is concentrated into domain walls across which a π phase shift in the spin correlations of the host material is induced. In two dimensions, these domain walls are ‘stripes’ which can be insulating2,3 or conducting4,5,6 — that is, metallic ‘rivers’ with their own low-energy degrees of freedom. However, in arrays of one-dimensional metals, which occur in materials such as organic conductors7, interactions between stripes typically drive a transition to an insulating ordered charge-density-wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large compared tothe CDW coupling between stripes. As a consequence, there should exist electronic quantum liquid-crystal phases, which constitute new states of matter, and which can be either high-temperature superconductors or two-dimensional anisotropic ‘metallic’ non-Fermi liquids. Neutron scattering and other experiments in the copper oxide superconductor La1.6−xNd0.4SrxCuO4 already provide evidence for the existence of these phases in at least one class of materials. More... »

PAGES

550

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/31177

DOI

http://dx.doi.org/10.1038/31177

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035837523


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "*Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kivelson", 
        "givenName": "S. A.", 
        "id": "sg:person.01330562567.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330562567.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "\u2020Department of Physics, University of Illinois, Urbana, Illinois 61801-3080, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fradkin", 
        "givenName": "E.", 
        "id": "sg:person.011174121215.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011174121215.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "\u2021Brookhaven National Laboratory, Upton, New York 11973-5000, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emery", 
        "givenName": "V. J.", 
        "id": "sg:person.014326773327.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326773327.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.78.338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001209368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001209368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.6120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015806313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.6120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015806313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-2895-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026766846", 
          "https://doi.org/10.1007/978-1-4613-2895-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-2895-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028208360", 
          "https://doi.org/10.1007/978-1-4613-2895-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-2895-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028208360", 
          "https://doi.org/10.1007/978-1-4613-2895-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(97)00252-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032580436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037624168", 
          "https://doi.org/10.1038/375561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047288539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047288539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0379-6779(96)03696-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048192253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049199183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049199183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053146168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053146168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.9128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.9128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060574749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060574749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511813467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-87002-5.50009-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111437901"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-06", 
    "datePublishedReg": "1998-06-01", 
    "description": "The character of the ground state of an antiferromagnetic insulator is fundamentally altered following addition of even a small amount of charge1. The added charge is concentrated into domain walls across which a \u03c0 phase shift in the spin correlations of the host material is induced. In two dimensions, these domain walls are \u2018stripes\u2019 which can be insulating2,3 or conducting4,5,6 \u2014 that is, metallic \u2018rivers\u2019 with their own low-energy degrees of freedom. However, in arrays of one-dimensional metals, which occur in materials such as organic conductors7, interactions between stripes typically drive a transition to an insulating ordered charge-density-wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large compared tothe CDW coupling between stripes. As a consequence, there should exist electronic quantum liquid-crystal phases, which constitute new states of matter, and which can be either high-temperature superconductors or two-dimensional anisotropic \u2018metallic\u2019 non-Fermi liquids. Neutron scattering and other experiments in the copper oxide superconductor La1.6\u2212xNd0.4SrxCuO4 already provide evidence for the existence of these phases in at least one class of materials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/31177", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6685", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "393"
      }
    ], 
    "name": "Electronic liquid-crystal phases of a doped Mott insulator", 
    "pagination": "550", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aab7c1e5795b5cfdb044dcea2c6958a35e22929ced9768a6b64cd278dc57e745"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/31177"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035837523"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/31177", 
      "https://app.dimensions.ai/details/publication/pub.1035837523"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/31177"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/31177'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/31177'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/31177'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/31177'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/31177 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N08e2f3f74f9c4c43b12f3ec4672ec5db
4 schema:citation sg:pub.10.1007/978-1-4613-2895-7
5 sg:pub.10.1007/978-1-4613-2895-7_6
6 sg:pub.10.1038/375561a0
7 https://doi.org/10.1016/b978-0-444-87002-5.50009-6
8 https://doi.org/10.1016/s0379-6779(96)03696-x
9 https://doi.org/10.1016/s0921-4534(97)00252-9
10 https://doi.org/10.1017/cbo9780511813467
11 https://doi.org/10.1103/physrevb.40.7391
12 https://doi.org/10.1103/physrevb.46.9128
13 https://doi.org/10.1103/physrevb.51.1023
14 https://doi.org/10.1103/physrevb.56.6120
15 https://doi.org/10.1103/physrevlett.64.1445
16 https://doi.org/10.1103/physrevlett.67.1791
17 https://doi.org/10.1103/physrevlett.68.1414
18 https://doi.org/10.1103/physrevlett.75.1626
19 https://doi.org/10.1103/physrevlett.78.2465
20 https://doi.org/10.1103/physrevlett.78.338
21 https://doi.org/10.1103/physrevlett.78.3931
22 https://doi.org/10.1103/physrevlett.80.1738
23 schema:datePublished 1998-06
24 schema:datePublishedReg 1998-06-01
25 schema:description The character of the ground state of an antiferromagnetic insulator is fundamentally altered following addition of even a small amount of charge1. The added charge is concentrated into domain walls across which a π phase shift in the spin correlations of the host material is induced. In two dimensions, these domain walls are ‘stripes’ which can be insulating2,3 or conducting4,5,6 — that is, metallic ‘rivers’ with their own low-energy degrees of freedom. However, in arrays of one-dimensional metals, which occur in materials such as organic conductors7, interactions between stripes typically drive a transition to an insulating ordered charge-density-wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large compared tothe CDW coupling between stripes. As a consequence, there should exist electronic quantum liquid-crystal phases, which constitute new states of matter, and which can be either high-temperature superconductors or two-dimensional anisotropic ‘metallic’ non-Fermi liquids. Neutron scattering and other experiments in the copper oxide superconductor La1.6−xNd0.4SrxCuO4 already provide evidence for the existence of these phases in at least one class of materials.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N5c50567cf1324ab1b2fce75e2989f42d
30 Ncce3764b6f4041f7baed88a6c74b6dda
31 sg:journal.1018957
32 schema:name Electronic liquid-crystal phases of a doped Mott insulator
33 schema:pagination 550
34 schema:productId N36dca19099f64a7a9ceb7ed73533a889
35 Nb50ba420dc2646a18ec37e30e3779eb3
36 Neea624080a0e4f99b6477b6cd85a4390
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035837523
38 https://doi.org/10.1038/31177
39 schema:sdDatePublished 2019-04-11T12:23
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N4a23216639384979b9abb51f2ae0db55
42 schema:url https://www.nature.com/articles/31177
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N08e2f3f74f9c4c43b12f3ec4672ec5db rdf:first sg:person.01330562567.39
47 rdf:rest Na9813b0353904a6eb8985d7671864fd6
48 N3664a64e1eee4e71a1f59ee6cb0d3cd4 rdf:first sg:person.014326773327.58
49 rdf:rest rdf:nil
50 N36dca19099f64a7a9ceb7ed73533a889 schema:name dimensions_id
51 schema:value pub.1035837523
52 rdf:type schema:PropertyValue
53 N4a23216639384979b9abb51f2ae0db55 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N5c50567cf1324ab1b2fce75e2989f42d schema:issueNumber 6685
56 rdf:type schema:PublicationIssue
57 Na9813b0353904a6eb8985d7671864fd6 rdf:first sg:person.011174121215.90
58 rdf:rest N3664a64e1eee4e71a1f59ee6cb0d3cd4
59 Nb50ba420dc2646a18ec37e30e3779eb3 schema:name doi
60 schema:value 10.1038/31177
61 rdf:type schema:PropertyValue
62 Ncce3764b6f4041f7baed88a6c74b6dda schema:volumeNumber 393
63 rdf:type schema:PublicationVolume
64 Neea624080a0e4f99b6477b6cd85a4390 schema:name readcube_id
65 schema:value aab7c1e5795b5cfdb044dcea2c6958a35e22929ced9768a6b64cd278dc57e745
66 rdf:type schema:PropertyValue
67 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
68 schema:name Engineering
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
71 schema:name Materials Engineering
72 rdf:type schema:DefinedTerm
73 sg:journal.1018957 schema:issn 0090-0028
74 1476-4687
75 schema:name Nature
76 rdf:type schema:Periodical
77 sg:person.011174121215.90 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
78 schema:familyName Fradkin
79 schema:givenName E.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011174121215.90
81 rdf:type schema:Person
82 sg:person.01330562567.39 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
83 schema:familyName Kivelson
84 schema:givenName S. A.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330562567.39
86 rdf:type schema:Person
87 sg:person.014326773327.58 schema:affiliation https://www.grid.ac/institutes/grid.202665.5
88 schema:familyName Emery
89 schema:givenName V. J.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326773327.58
91 rdf:type schema:Person
92 sg:pub.10.1007/978-1-4613-2895-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028208360
93 https://doi.org/10.1007/978-1-4613-2895-7
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-1-4613-2895-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026766846
96 https://doi.org/10.1007/978-1-4613-2895-7_6
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/375561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037624168
99 https://doi.org/10.1038/375561a0
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/b978-0-444-87002-5.50009-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111437901
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0379-6779(96)03696-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048192253
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0921-4534(97)00252-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032580436
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/cbo9780511813467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666741
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.40.7391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060552433
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.46.9128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060564510
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.51.1023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060574749
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevb.56.6120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015806313
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.64.1445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800267
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.67.1791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803198
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.68.1414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804143
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.75.1626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811606
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevlett.78.2465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047288539
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.78.338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001209368
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.78.3931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049199183
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.80.1738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053146168
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
134 schema:name *Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.202665.5 schema:alternateName Brookhaven National Laboratory
137 schema:name ‡Brookhaven National Laboratory, Upton, New York 11973-5000, USA
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.35403.31 schema:alternateName University of Illinois at Urbana Champaign
140 schema:name †Department of Physics, University of Illinois, Urbana, Illinois 61801-3080, USA
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...