Climatic impact of explosive volcanic eruptions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-10

AUTHORS

P. M. Kelly, C. B. Sear

ABSTRACT

Major explosive volcanic eruptions inject ash and gas into the upper atmosphere, producing aerosol layers which can affect the global energy balance and climate1. Empirical studies have shown that major eruptions can produce a decrease in surface air temperature of up to a few tenths of a degree Celsius over the Northern Hemisphere land masses and that the effects may last for 2 or 3 yr (refs 2–4). This temperature decrease has been simulated by numerical models using realistic estimates of the nature of the aerosol cloud1. Previous empirical studies of volcanic effects have examined fluctuations in monthly, seasonal or annual climate data, but generally only at a frequency of one observation per year. This has rendered determination of the timing of the onset of effects during the first year impossible. Using continuous monthly surface air temperature for the Northern Hemisphere land masses, we resolve the month-by-month development and decay of the initial climatic impact. In the case of Northern Hemisphere eruptions, abrupt cooling occurs during the first two to three months, which is more rapid than previously assumed. More... »

PAGES

740-743

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/311740a0

DOI

http://dx.doi.org/10.1038/311740a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043020322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelly", 
        "givenName": "P. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sear", 
        "givenName": "C. B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/288230a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016542920", 
          "https://doi.org/10.1038/288230a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/308021a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045221906", 
          "https://doi.org/10.1038/308021a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/301373a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017388670", 
          "https://doi.org/10.1038/301373a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-10", 
    "datePublishedReg": "1984-10-01", 
    "description": "Major explosive volcanic eruptions inject ash and gas into the upper atmosphere, producing aerosol layers which can affect the global energy balance and climate1. Empirical studies have shown that major eruptions can produce a decrease in surface air temperature of up to a few tenths of a degree Celsius over the Northern Hemisphere land masses and that the effects may last for 2 or 3 yr (refs 2\u20134). This temperature decrease has been simulated by numerical models using realistic estimates of the nature of the aerosol cloud1. Previous empirical studies of volcanic effects have examined fluctuations in monthly, seasonal or annual climate data, but generally only at a frequency of one observation per year. This has rendered determination of the timing of the onset of effects during the first year impossible. Using continuous monthly surface air temperature for the Northern Hemisphere land masses, we resolve the month-by-month development and decay of the initial climatic impact. In the case of Northern Hemisphere eruptions, abrupt cooling occurs during the first two to three months, which is more rapid than previously assumed.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/311740a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5988", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "311"
      }
    ], 
    "keywords": [
      "Northern Hemisphere land masses", 
      "surface air temperature", 
      "climatic impacts", 
      "land masses", 
      "air temperature", 
      "monthly surface air temperature", 
      "Northern Hemisphere eruptions", 
      "explosive volcanic eruptions", 
      "annual climate data", 
      "global energy balance", 
      "major eruptions", 
      "volcanic eruptions", 
      "volcanic effects", 
      "climate data", 
      "eruption", 
      "aerosol layer", 
      "numerical model", 
      "temperature decrease", 
      "upper atmosphere", 
      "degrees Celsius", 
      "realistic estimates", 
      "energy balance", 
      "month development", 
      "climate1", 
      "cloud1", 
      "atmosphere", 
      "yr", 
      "temperature", 
      "timing", 
      "Celsius", 
      "fluctuations", 
      "estimates", 
      "ash", 
      "impact", 
      "mass", 
      "occurs", 
      "layer", 
      "balance", 
      "gas", 
      "tenth", 
      "years", 
      "decrease", 
      "data", 
      "model", 
      "onset", 
      "decay", 
      "nature", 
      "study", 
      "determination", 
      "effect", 
      "frequency", 
      "months", 
      "development", 
      "previous empirical studies", 
      "first year", 
      "cases", 
      "onset of effect", 
      "empirical study", 
      "observations", 
      "Major explosive volcanic eruptions inject ash", 
      "explosive volcanic eruptions inject ash", 
      "volcanic eruptions inject ash", 
      "eruptions inject ash", 
      "inject ash", 
      "Hemisphere land masses", 
      "aerosol cloud1", 
      "continuous monthly surface air temperature", 
      "initial climatic impact", 
      "Hemisphere eruptions"
    ], 
    "name": "Climatic impact of explosive volcanic eruptions", 
    "pagination": "740-743", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043020322"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/311740a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/311740a0", 
      "https://app.dimensions.ai/details/publication/pub.1043020322"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_168.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/311740a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/311740a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/311740a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/311740a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/311740a0'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      99 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/311740a0 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 anzsrc-for:0406
4 schema:author Ne2dfbb3252644fe48b6ad119352fd22d
5 schema:citation sg:pub.10.1038/288230a0
6 sg:pub.10.1038/301373a0
7 sg:pub.10.1038/308021a0
8 schema:datePublished 1984-10
9 schema:datePublishedReg 1984-10-01
10 schema:description Major explosive volcanic eruptions inject ash and gas into the upper atmosphere, producing aerosol layers which can affect the global energy balance and climate1. Empirical studies have shown that major eruptions can produce a decrease in surface air temperature of up to a few tenths of a degree Celsius over the Northern Hemisphere land masses and that the effects may last for 2 or 3 yr (refs 2–4). This temperature decrease has been simulated by numerical models using realistic estimates of the nature of the aerosol cloud1. Previous empirical studies of volcanic effects have examined fluctuations in monthly, seasonal or annual climate data, but generally only at a frequency of one observation per year. This has rendered determination of the timing of the onset of effects during the first year impossible. Using continuous monthly surface air temperature for the Northern Hemisphere land masses, we resolve the month-by-month development and decay of the initial climatic impact. In the case of Northern Hemisphere eruptions, abrupt cooling occurs during the first two to three months, which is more rapid than previously assumed.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N73ee91358cf847c2927abb1828c80afc
15 Nfe3a87242d9d46aea66cd5ae4f5ebe75
16 sg:journal.1018957
17 schema:keywords Celsius
18 Hemisphere eruptions
19 Hemisphere land masses
20 Major explosive volcanic eruptions inject ash
21 Northern Hemisphere eruptions
22 Northern Hemisphere land masses
23 aerosol cloud1
24 aerosol layer
25 air temperature
26 annual climate data
27 ash
28 atmosphere
29 balance
30 cases
31 climate data
32 climate1
33 climatic impacts
34 cloud1
35 continuous monthly surface air temperature
36 data
37 decay
38 decrease
39 degrees Celsius
40 determination
41 development
42 effect
43 empirical study
44 energy balance
45 eruption
46 eruptions inject ash
47 estimates
48 explosive volcanic eruptions
49 explosive volcanic eruptions inject ash
50 first year
51 fluctuations
52 frequency
53 gas
54 global energy balance
55 impact
56 initial climatic impact
57 inject ash
58 land masses
59 layer
60 major eruptions
61 mass
62 model
63 month development
64 monthly surface air temperature
65 months
66 nature
67 numerical model
68 observations
69 occurs
70 onset
71 onset of effect
72 previous empirical studies
73 realistic estimates
74 study
75 surface air temperature
76 temperature
77 temperature decrease
78 tenth
79 timing
80 upper atmosphere
81 volcanic effects
82 volcanic eruptions
83 volcanic eruptions inject ash
84 years
85 yr
86 schema:name Climatic impact of explosive volcanic eruptions
87 schema:pagination 740-743
88 schema:productId Nbaac27fa6fc6445985a729848befbd58
89 Nd520418cdd5948b9a3d1ee3ffbc219da
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043020322
91 https://doi.org/10.1038/311740a0
92 schema:sdDatePublished 2021-11-01T17:56
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N7295c89cf44b480f845385d173809b1b
95 schema:url https://doi.org/10.1038/311740a0
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N0a9de2161ea840b680429c12e64da362 rdf:first N7866c024902e434a9dec3c0c3be89d2a
100 rdf:rest rdf:nil
101 N1425638c6c89430b946a801faa8618ff schema:affiliation grid-institutes:grid.8273.e
102 schema:familyName Kelly
103 schema:givenName P. M.
104 rdf:type schema:Person
105 N7295c89cf44b480f845385d173809b1b schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N73ee91358cf847c2927abb1828c80afc schema:volumeNumber 311
108 rdf:type schema:PublicationVolume
109 N7866c024902e434a9dec3c0c3be89d2a schema:affiliation grid-institutes:grid.8273.e
110 schema:familyName Sear
111 schema:givenName C. B.
112 rdf:type schema:Person
113 Nbaac27fa6fc6445985a729848befbd58 schema:name doi
114 schema:value 10.1038/311740a0
115 rdf:type schema:PropertyValue
116 Nd520418cdd5948b9a3d1ee3ffbc219da schema:name dimensions_id
117 schema:value pub.1043020322
118 rdf:type schema:PropertyValue
119 Ne2dfbb3252644fe48b6ad119352fd22d rdf:first N1425638c6c89430b946a801faa8618ff
120 rdf:rest N0a9de2161ea840b680429c12e64da362
121 Nfe3a87242d9d46aea66cd5ae4f5ebe75 schema:issueNumber 5988
122 rdf:type schema:PublicationIssue
123 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
124 schema:name Earth Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
127 schema:name Geology
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
130 schema:name Physical Geography and Environmental Geoscience
131 rdf:type schema:DefinedTerm
132 sg:journal.1018957 schema:issn 0028-0836
133 1476-4687
134 schema:name Nature
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:pub.10.1038/288230a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016542920
138 https://doi.org/10.1038/288230a0
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/301373a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017388670
141 https://doi.org/10.1038/301373a0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/308021a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045221906
144 https://doi.org/10.1038/308021a0
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.8273.e schema:alternateName Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
147 schema:name Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...