Collective dynamics of ‘small-world’ networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

Duncan J. Watts, Steven H. Strogatz

ABSTRACT

Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices. More... »

PAGES

440-442

Journal

TITLE

Nature

ISSUE

6684

VOLUME

393

Author Affiliations

Related Patents

  • Methods And Systems For Connecting A Social Network To A Geospatial Data Repository
  • Native Application Testing
  • Micro And Macro Trust In A Decentralized Environment
  • System And Method Of Mapping And Analyzing Vulnerabilities In Networks
  • Subgraph Covers As Representations For Sparse Graphs
  • Methods And Systems For Caching Data Using Behavioral Event Correlations
  • Methods And Systems For Providing Mapping, Data Management, And Analysis
  • Detecting And Responding To An Atypical Behavior
  • Implementing Structural Plasticity In An Artificial Nervous System
  • Native Application Testing
  • Implementing Structural Plasticity In An Artificial Nervous System
  • Encoding And Decoding Information
  • Method For Computing The Entropic Value Of A Dynamical Memory System
  • Methods And Systems For Caching Data Using Behavioral Event Correlations
  • Encoding And Decoding Information
  • Establishing A Social Network
  • Network-Aware Product Rollout In Online Social Networks
  • Methods And Systems For Caching Data Using Behavioral Event Correlations
  • Generating And Evaluating Expert Networks
  • Systems And Methods For Mapping And Analyzing Networks
  • System And Method Of Mapping And Analyzing Vulnerabilities In Networks
  • System And Method Of Mapping And Analyzing Vulnerabilities In Networks
  • Data Graphing Methods, Articles Of Manufacture, And Computing Devices
  • System And Method For Analyzing The Structure Of Logical Networks
  • Scalable Computer System
  • Network-On-Chip Computing Systems With Wireless Interconnects
  • Failure Repair Sequence Generation For Nodal Network
  • Encoding And Decoding Information
  • Micro And Macro Trust In A Decentralized Environment
  • Generating And Evaluating Expert Networks
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/30918

    DOI

    http://dx.doi.org/10.1038/30918

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041985305

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9623998


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Caenorhabditis elegans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Communicable Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Games, Experimental", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nerve Net", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Watts", 
            "givenName": "Duncan J.", 
            "id": "sg:person.01005350474.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005350474.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Theoretical and Applied Mechanics, KimballHall, Cornell University, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strogatz", 
            "givenName": "Steven H.", 
            "id": "sg:person.01212562774.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212562774.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.92.15.6655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000176212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-69689-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004761286", 
              "https://doi.org/10.1007/978-3-642-69689-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-69689-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004761286", 
              "https://doi.org/10.1007/978-3-642-69689-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(88)90074-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006622326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338334a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017767690", 
              "https://doi.org/10.1038/338334a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(91)90015-b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018068343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(95)00093-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021258168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(69)90015-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023348122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(88)90075-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024593720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-22492-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026413919", 
              "https://doi.org/10.1007/978-3-662-22492-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-22492-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026413919", 
              "https://doi.org/10.1007/978-3-662-22492-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-58484-6_278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027871831", 
              "https://doi.org/10.1007/3-540-58484-6_278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/359826a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030106977", 
              "https://doi.org/10.1038/359826a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0921-4526(96)85057-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033279424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/376236a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036912701", 
              "https://doi.org/10.1038/376236a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/378465a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049723604", 
              "https://doi.org/10.1038/378465a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1293-102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056645247", 
              "https://doi.org/10.1038/scientificamerican1293-102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.1483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.1483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.2791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060815978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.2791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060815978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2321017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062532631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.7466396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062646865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2265556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069854834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511815478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098700813"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-06", 
        "datePublishedReg": "1998-06-01", 
        "description": "Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/30918", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6684", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "393"
          }
        ], 
        "name": "Collective dynamics of \u2018small-world\u2019 networks", 
        "pagination": "440-442", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c7ffa89082fe54b2a783ad7e1876a22ed81affb90d8e5938e02d0d5e8a41ec22"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9623998"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/30918"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041985305"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/30918", 
          "https://app.dimensions.ai/details/publication/pub.1041985305"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/30918"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/30918'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/30918'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/30918'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/30918'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      21 PREDICATES      58 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/30918 schema:about N0678ebf260074f23b81e4a3a6244f9ad
    2 N1e95517523214c5384eb13acb6f63f09
    3 N39f6b47c96c941df8ee3053489f77c42
    4 N6f545b62fe3645f0820fe3b329678e49
    5 N73cf82b7056946b492c8505b0088dbbe
    6 N9185196fbf8b45db84f45daad1e009e5
    7 Nb123275970144c0293fe4659ad8ecb0c
    8 Nc739113902c94db7a88c6849ce804aa8
    9 anzsrc-for:01
    10 anzsrc-for:0101
    11 schema:author N7792c97e0fb647de8a10389c4cd151aa
    12 schema:citation sg:pub.10.1007/3-540-58484-6_278
    13 sg:pub.10.1007/978-3-642-69689-3
    14 sg:pub.10.1007/978-3-662-22492-2
    15 sg:pub.10.1038/338334a0
    16 sg:pub.10.1038/359826a0
    17 sg:pub.10.1038/376236a0
    18 sg:pub.10.1038/378465a0
    19 sg:pub.10.1038/scientificamerican1293-102
    20 https://doi.org/10.1016/0022-5193(69)90015-0
    21 https://doi.org/10.1016/0025-5564(88)90074-0
    22 https://doi.org/10.1016/0025-5564(88)90075-2
    23 https://doi.org/10.1016/0025-5564(91)90015-b
    24 https://doi.org/10.1016/0025-5564(95)00093-3
    25 https://doi.org/10.1016/0921-4526(96)85057-5
    26 https://doi.org/10.1017/cbo9780511815478
    27 https://doi.org/10.1073/pnas.92.15.6655
    28 https://doi.org/10.1103/physreve.48.1483
    29 https://doi.org/10.1103/physrevlett.79.2791
    30 https://doi.org/10.1126/science.2321017
    31 https://doi.org/10.1126/science.7466396
    32 https://doi.org/10.2307/2265556
    33 schema:datePublished 1998-06
    34 schema:datePublishedReg 1998-06-01
    35 schema:description Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N4b6e90cbc4b64824a883ed40689f3407
    40 N7105877658544e6fa79376de4dedf13f
    41 sg:journal.1018957
    42 schema:name Collective dynamics of ‘small-world’ networks
    43 schema:pagination 440-442
    44 schema:productId N23a40aa691d24f4d8e9d425ec6f15d62
    45 N38ae44bc4b454b7488e6dfee0568e5a1
    46 N41eb194394f24ade86e7a85762f09a6a
    47 N69d1cdd3761c45588d1aa3b005a3c750
    48 N874d6e40dc4046f19d15bba35b8c9069
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    50 https://doi.org/10.1038/30918
    51 schema:sdDatePublished 2019-04-11T12:24
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N86fa22294cc6416e939010c5e3375f43
    54 schema:url http://www.nature.com/articles/30918
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N0678ebf260074f23b81e4a3a6244f9ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    59 schema:name Models, Biological
    60 rdf:type schema:DefinedTerm
    61 N1e95517523214c5384eb13acb6f63f09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    62 schema:name Models, Theoretical
    63 rdf:type schema:DefinedTerm
    64 N23a40aa691d24f4d8e9d425ec6f15d62 schema:name readcube_id
    65 schema:value c7ffa89082fe54b2a783ad7e1876a22ed81affb90d8e5938e02d0d5e8a41ec22
    66 rdf:type schema:PropertyValue
    67 N38ae44bc4b454b7488e6dfee0568e5a1 schema:name nlm_unique_id
    68 schema:value 0410462
    69 rdf:type schema:PropertyValue
    70 N39f6b47c96c941df8ee3053489f77c42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Caenorhabditis elegans
    72 rdf:type schema:DefinedTerm
    73 N41eb194394f24ade86e7a85762f09a6a schema:name doi
    74 schema:value 10.1038/30918
    75 rdf:type schema:PropertyValue
    76 N4b6e90cbc4b64824a883ed40689f3407 schema:volumeNumber 393
    77 rdf:type schema:PublicationVolume
    78 N69d1cdd3761c45588d1aa3b005a3c750 schema:name pubmed_id
    79 schema:value 9623998
    80 rdf:type schema:PropertyValue
    81 N6f545b62fe3645f0820fe3b329678e49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Communicable Diseases
    83 rdf:type schema:DefinedTerm
    84 N7105877658544e6fa79376de4dedf13f schema:issueNumber 6684
    85 rdf:type schema:PublicationIssue
    86 N73cf82b7056946b492c8505b0088dbbe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Models, Neurological
    88 rdf:type schema:DefinedTerm
    89 N7792c97e0fb647de8a10389c4cd151aa rdf:first sg:person.01005350474.77
    90 rdf:rest Nd4b4800498ef4f23a2974433e19a38ea
    91 N86fa22294cc6416e939010c5e3375f43 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N874d6e40dc4046f19d15bba35b8c9069 schema:name dimensions_id
    94 schema:value pub.1041985305
    95 rdf:type schema:PropertyValue
    96 N9185196fbf8b45db84f45daad1e009e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Games, Experimental
    98 rdf:type schema:DefinedTerm
    99 Nb123275970144c0293fe4659ad8ecb0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Animals
    101 rdf:type schema:DefinedTerm
    102 Nc739113902c94db7a88c6849ce804aa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Nerve Net
    104 rdf:type schema:DefinedTerm
    105 Nd4b4800498ef4f23a2974433e19a38ea rdf:first sg:person.01212562774.72
    106 rdf:rest rdf:nil
    107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Mathematical Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Pure Mathematics
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1018957 schema:issn 0090-0028
    114 1476-4687
    115 schema:name Nature
    116 rdf:type schema:Periodical
    117 sg:person.01005350474.77 schema:familyName Watts
    118 schema:givenName Duncan J.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005350474.77
    120 rdf:type schema:Person
    121 sg:person.01212562774.72 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    122 schema:familyName Strogatz
    123 schema:givenName Steven H.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212562774.72
    125 rdf:type schema:Person
    126 sg:pub.10.1007/3-540-58484-6_278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027871831
    127 https://doi.org/10.1007/3-540-58484-6_278
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/978-3-642-69689-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004761286
    130 https://doi.org/10.1007/978-3-642-69689-3
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/978-3-662-22492-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026413919
    133 https://doi.org/10.1007/978-3-662-22492-2
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1038/338334a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017767690
    136 https://doi.org/10.1038/338334a0
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1038/359826a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030106977
    139 https://doi.org/10.1038/359826a0
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1038/376236a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036912701
    142 https://doi.org/10.1038/376236a0
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/378465a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049723604
    145 https://doi.org/10.1038/378465a0
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/scientificamerican1293-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056645247
    148 https://doi.org/10.1038/scientificamerican1293-102
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/0022-5193(69)90015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023348122
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/0025-5564(88)90074-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006622326
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/0025-5564(88)90075-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024593720
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/0025-5564(91)90015-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1018068343
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/0025-5564(95)00093-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021258168
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/0921-4526(96)85057-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033279424
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1017/cbo9780511815478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700813
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1073/pnas.92.15.6655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000176212
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physreve.48.1483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715592
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevlett.79.2791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815978
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1126/science.2321017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532631
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1126/science.7466396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062646865
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.2307/2265556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069854834
    175 rdf:type schema:CreativeWork
    176 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
    177 schema:name Department of Theoretical and Applied Mechanics, KimballHall, Cornell University, Ithaca, New York 14853, USA
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...