Collective dynamics of ‘small-world’ networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

Duncan J. Watts, Steven H. Strogatz

ABSTRACT

Networks of coupled dynamical systems have been used to model biological oscillators1,2,3,4, Josephson junction arrays5,6, excitable media7, neural networks8,9,10, spatial games11, genetic control networks12 and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them ‘small-world’ networks, by analogy with the small-world phenomenon13,14 (popularly known as six degrees of separation15). The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices. More... »

PAGES

440-442

Journal

TITLE

Nature

ISSUE

6684

VOLUME

393

Related Patents

  • Native Application Testing
  • System And Method Of Mapping And Analyzing Vulnerabilities In Networks
  • Methods And Systems For Connecting A Social Network To A Geospatial Data Repository
  • Micro And Macro Trust In A Decentralized Environment
  • Methods And Systems For Providing Mapping, Data Management, And Analysis
  • Subgraph Covers As Representations For Sparse Graphs
  • Methods And Systems For Caching Data Using Behavioral Event Correlations
  • Detecting And Responding To An Atypical Behavior
  • Implementing Structural Plasticity In An Artificial Nervous System
  • Native Application Testing
  • Methods And Systems For Providing Mapping, Data Management, And Analysis
  • Chemical Computer
  • Encoding And Decoding Information
  • Methods And Systems For Caching Data Using Behavioral Event Correlations
  • Detecting And Responding To An Atypical Behavior
  • Methods And Systems For Caching Data Using Behavioral Event Correlations
  • Establishing A Social Network
  • Implementing Structural Plasticity In An Artificial Nervous System
  • Method For Computing The Entropic Value Of A Dynamical Memory System
  • Encoding And Decoding Information
  • Network-Aware Product Rollout In Online Social Networks
  • System And Method Of Mapping And Analyzing Vulnerabilities In Networks
  • Generating And Evaluating Expert Networks
  • Data Graphing Methods, Articles Of Manufacture, And Computing Devices
  • System And Method Of Mapping And Analyzing Vulnerabilities In Networks
  • Network-Aware Product Rollout In Online Social Networks
  • Systems And Methods For Mapping And Analyzing Networks
  • System And Method For Analyzing The Structure Of Logical Networks
  • Generating And Evaluating Expert Networks
  • Scalable Computer System
  • Micro And Macro Trust In A Decentralized Environment
  • Encoding And Decoding Information
  • Failure Repair Sequence Generation For Nodal Network
  • Network-On-Chip Computing Systems With Wireless Interconnects
  • System And Method For Providing End-To-End Security Of Data And Metadata
  • System And Method For Maintaining Metadata Correctness
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/30918

    DOI

    http://dx.doi.org/10.1038/30918

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041985305

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9623998


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Caenorhabditis elegans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Communicable Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Games, Experimental", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nerve Net", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Paul F. Lazarsfeld Center for the Social Sciences, Columbia University, 812 SIPA Building, 420 W118 St, 10027, New York, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.21729.3f", 
              "name": [
                "Paul F. Lazarsfeld Center for the Social Sciences, Columbia University, 812 SIPA Building, 420 W118 St, 10027, New York, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watts", 
            "givenName": "Duncan J.", 
            "id": "sg:person.01005350474.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005350474.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Theoretical and Applied Mechanics, KimballHall, Cornell University, 14853, Ithaca, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Theoretical and Applied Mechanics, KimballHall, Cornell University, 14853, Ithaca, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strogatz", 
            "givenName": "Steven H.", 
            "id": "sg:person.01212562774.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212562774.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-58484-6_278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027871831", 
              "https://doi.org/10.1007/3-540-58484-6_278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/378465a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049723604", 
              "https://doi.org/10.1038/378465a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/376236a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036912701", 
              "https://doi.org/10.1038/376236a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-22492-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026413919", 
              "https://doi.org/10.1007/978-3-662-22492-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-69689-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004761286", 
              "https://doi.org/10.1007/978-3-642-69689-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338334a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017767690", 
              "https://doi.org/10.1038/338334a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/359826a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030106977", 
              "https://doi.org/10.1038/359826a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1293-102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056645247", 
              "https://doi.org/10.1038/scientificamerican1293-102"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-06", 
        "datePublishedReg": "1998-06-01", 
        "description": "Networks of coupled dynamical systems have been used to model biological oscillators1,2,3,4, Josephson junction arrays5,6, excitable media7, neural networks8,9,10, spatial games11, genetic control networks12 and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks \u2018rewired\u2019 to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them \u2018small-world\u2019 networks, by analogy with the small-world phenomenon13,14 (popularly known as six degrees of separation15). The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/30918", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6684", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "393"
          }
        ], 
        "keywords": [
          "small-world networks", 
          "dynamical systems", 
          "regular lattice", 
          "smaller characteristic path length", 
          "signal propagation speed", 
          "random graphs", 
          "Josephson junctions", 
          "amount of disorder", 
          "collaboration graph", 
          "self-organizing systems", 
          "collective dynamics", 
          "connection topology", 
          "regular networks", 
          "computational power", 
          "characteristic path length", 
          "simple model", 
          "power grid", 
          "graph", 
          "lattice", 
          "path length", 
          "synchronizability", 
          "neural network", 
          "network", 
          "topology", 
          "model", 
          "system", 
          "dynamics", 
          "grid", 
          "analogy", 
          "speed", 
          "power", 
          "state", 
          "junction", 
          "social networks", 
          "middle ground", 
          "length", 
          "extremes", 
          "ground", 
          "film actors", 
          "amount", 
          "infectious diseases", 
          "display", 
          "western United States", 
          "worm Caenorhabditis", 
          "disorders", 
          "actors", 
          "United States", 
          "disease", 
          "Caenorhabditis"
        ], 
        "name": "Collective dynamics of \u2018small-world\u2019 networks", 
        "pagination": "440-442", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041985305"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/30918"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9623998"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/30918", 
          "https://app.dimensions.ai/details/publication/pub.1041985305"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_275.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/30918"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/30918'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/30918'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/30918'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/30918'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      91 URIs      75 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/30918 schema:about N0dbae79b203f4438b2ffb4ecf059f939
    2 N20da6c3749704455b21bb854aa5d2c1d
    3 N238e021358a34964a782d078ed72e88e
    4 N2dec15904ca44e39b037a154b49f1c32
    5 N888c842f365840f39f0a7e519f0b9930
    6 Nd9d7a7e62d0d4330ae1463f98dc76ba2
    7 Nfef62abad6394da1ad5ea8c0fb9e2c33
    8 Nff601e465b6647ac8d3e616a5e2e2b50
    9 anzsrc-for:01
    10 anzsrc-for:0101
    11 schema:author N2bfa7fc3cc464466ae0683b81e11508c
    12 schema:citation sg:pub.10.1007/3-540-58484-6_278
    13 sg:pub.10.1007/978-3-642-69689-3
    14 sg:pub.10.1007/978-3-662-22492-2
    15 sg:pub.10.1038/338334a0
    16 sg:pub.10.1038/359826a0
    17 sg:pub.10.1038/376236a0
    18 sg:pub.10.1038/378465a0
    19 sg:pub.10.1038/scientificamerican1293-102
    20 schema:datePublished 1998-06
    21 schema:datePublishedReg 1998-06-01
    22 schema:description Networks of coupled dynamical systems have been used to model biological oscillators1,2,3,4, Josephson junction arrays5,6, excitable media7, neural networks8,9,10, spatial games11, genetic control networks12 and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them ‘small-world’ networks, by analogy with the small-world phenomenon13,14 (popularly known as six degrees of separation15). The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
    23 schema:genre article
    24 schema:isAccessibleForFree false
    25 schema:isPartOf Nb1ef6a036bea4d7abb885457d4c293db
    26 Nf8f988e4787f4569ae16b8c1aef7bb82
    27 sg:journal.1018957
    28 schema:keywords Caenorhabditis
    29 Josephson junctions
    30 United States
    31 actors
    32 amount
    33 amount of disorder
    34 analogy
    35 characteristic path length
    36 collaboration graph
    37 collective dynamics
    38 computational power
    39 connection topology
    40 disease
    41 disorders
    42 display
    43 dynamical systems
    44 dynamics
    45 extremes
    46 film actors
    47 graph
    48 grid
    49 ground
    50 infectious diseases
    51 junction
    52 lattice
    53 length
    54 middle ground
    55 model
    56 network
    57 neural network
    58 path length
    59 power
    60 power grid
    61 random graphs
    62 regular lattice
    63 regular networks
    64 self-organizing systems
    65 signal propagation speed
    66 simple model
    67 small-world networks
    68 smaller characteristic path length
    69 social networks
    70 speed
    71 state
    72 synchronizability
    73 system
    74 topology
    75 western United States
    76 worm Caenorhabditis
    77 schema:name Collective dynamics of ‘small-world’ networks
    78 schema:pagination 440-442
    79 schema:productId N0c6c2f0c6c1843fd94b865ffe942813f
    80 N369e9dcd471e47318d1c8da41e329bef
    81 Naf7d06432bf04c139a284d7fb0e55534
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    83 https://doi.org/10.1038/30918
    84 schema:sdDatePublished 2022-11-24T20:48
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher N4969a0ac2c4a423981c3e01b653a22b7
    87 schema:url https://doi.org/10.1038/30918
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N0c6c2f0c6c1843fd94b865ffe942813f schema:name doi
    92 schema:value 10.1038/30918
    93 rdf:type schema:PropertyValue
    94 N0dbae79b203f4438b2ffb4ecf059f939 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Games, Experimental
    96 rdf:type schema:DefinedTerm
    97 N20da6c3749704455b21bb854aa5d2c1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Communicable Diseases
    99 rdf:type schema:DefinedTerm
    100 N238e021358a34964a782d078ed72e88e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Animals
    102 rdf:type schema:DefinedTerm
    103 N2bfa7fc3cc464466ae0683b81e11508c rdf:first sg:person.01005350474.77
    104 rdf:rest N64b2af2003504bd6901d725c5b83fa14
    105 N2dec15904ca44e39b037a154b49f1c32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Models, Biological
    107 rdf:type schema:DefinedTerm
    108 N369e9dcd471e47318d1c8da41e329bef schema:name pubmed_id
    109 schema:value 9623998
    110 rdf:type schema:PropertyValue
    111 N4969a0ac2c4a423981c3e01b653a22b7 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 N64b2af2003504bd6901d725c5b83fa14 rdf:first sg:person.01212562774.72
    114 rdf:rest rdf:nil
    115 N888c842f365840f39f0a7e519f0b9930 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Models, Theoretical
    117 rdf:type schema:DefinedTerm
    118 Naf7d06432bf04c139a284d7fb0e55534 schema:name dimensions_id
    119 schema:value pub.1041985305
    120 rdf:type schema:PropertyValue
    121 Nb1ef6a036bea4d7abb885457d4c293db schema:volumeNumber 393
    122 rdf:type schema:PublicationVolume
    123 Nd9d7a7e62d0d4330ae1463f98dc76ba2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Nerve Net
    125 rdf:type schema:DefinedTerm
    126 Nf8f988e4787f4569ae16b8c1aef7bb82 schema:issueNumber 6684
    127 rdf:type schema:PublicationIssue
    128 Nfef62abad6394da1ad5ea8c0fb9e2c33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Models, Neurological
    130 rdf:type schema:DefinedTerm
    131 Nff601e465b6647ac8d3e616a5e2e2b50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Caenorhabditis elegans
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Mathematical Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Pure Mathematics
    139 rdf:type schema:DefinedTerm
    140 sg:journal.1018957 schema:issn 0028-0836
    141 1476-4687
    142 schema:name Nature
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.01005350474.77 schema:affiliation grid-institutes:grid.21729.3f
    146 schema:familyName Watts
    147 schema:givenName Duncan J.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005350474.77
    149 rdf:type schema:Person
    150 sg:person.01212562774.72 schema:affiliation grid-institutes:grid.5386.8
    151 schema:familyName Strogatz
    152 schema:givenName Steven H.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212562774.72
    154 rdf:type schema:Person
    155 sg:pub.10.1007/3-540-58484-6_278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027871831
    156 https://doi.org/10.1007/3-540-58484-6_278
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/978-3-642-69689-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004761286
    159 https://doi.org/10.1007/978-3-642-69689-3
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/978-3-662-22492-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026413919
    162 https://doi.org/10.1007/978-3-662-22492-2
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/338334a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017767690
    165 https://doi.org/10.1038/338334a0
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/359826a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030106977
    168 https://doi.org/10.1038/359826a0
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/376236a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036912701
    171 https://doi.org/10.1038/376236a0
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/378465a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049723604
    174 https://doi.org/10.1038/378465a0
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/scientificamerican1293-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056645247
    177 https://doi.org/10.1038/scientificamerican1293-102
    178 rdf:type schema:CreativeWork
    179 grid-institutes:grid.21729.3f schema:alternateName Paul F. Lazarsfeld Center for the Social Sciences, Columbia University, 812 SIPA Building, 420 W118 St, 10027, New York, New York, USA
    180 schema:name Paul F. Lazarsfeld Center for the Social Sciences, Columbia University, 812 SIPA Building, 420 W118 St, 10027, New York, New York, USA
    181 rdf:type schema:Organization
    182 grid-institutes:grid.5386.8 schema:alternateName Department of Theoretical and Applied Mechanics, KimballHall, Cornell University, 14853, Ithaca, New York, USA
    183 schema:name Department of Theoretical and Applied Mechanics, KimballHall, Cornell University, 14853, Ithaca, New York, USA
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...