Disruption of kilometre-sized asteroids by energetic collisions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

E. Asphaug, S. J. Ostro, R. S. Hudson, D. J. Scheeres, W. Benz

ABSTRACT

Recent numerical studies1,2,3,4,5 suggest that ‘rubble-pile’ asteroids (gravitationally bound aggregates of collisional debris) are common in the Solar System, and that self-gravitation may equal or exceed material cohesion for planetary bodies as small as several hundred metres. Because analytical scaling relations for impact cratering and disruption6,7,8 do not extend to this size regime, where gravity and material strength are both important, detailed simulations are needed to predict how small asteroids evolve through impact, and also to ascertain whether powerful explosions offer a viable defence against bodies headed for a collision with Earth. Here we present simulations, using a smooth-particle hydrodynamics code9, of energetic impacts into small planetary bodies with internal structure ranging from solid rock to porous aggregate. We find that the outcome of a collision is very sensitive to the configuration of pre-existing fractures and voids in the target. A porous asteroid (or one with deep regolith) damps the propagation of the shock wave from the impactor, sheltering the most distant regions, while greatly enhancing the local deposition of energy. Multiple-component asteroids (such as contact binaries) are also protected, because the shock wave cannot traverse the discontinuity between the components. We conclude that the first impact to significantly fragment an asteroid may determine its subsequent collisional evolution, and that internal structure will greatly influence attempts to disrupt or deflect an asteroid or comet headed towards Earth. More... »

PAGES

437-440

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/30911

DOI

http://dx.doi.org/10.1038/30911

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002888853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Earth Sciences, University of California, 95064, Santa Cruz, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.30389.31", 
          "name": [
            "Department of Earth Sciences, University of California, 95064, Santa Cruz, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asphaug", 
        "givenName": "E.", 
        "id": "sg:person.011326524611.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011326524611.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NASA Jet Propulsion Laboratory 300-233, Pasadena, 91109-8099, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "NASA Jet Propulsion Laboratory 300-233, Pasadena, 91109-8099, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ostro", 
        "givenName": "S. J.", 
        "id": "sg:person.0773454667.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773454667.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Electrical Engineering and Computer Science, Washington State University, 99164-2752, Pullman, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "School of Electrical Engineering and Computer Science, Washington State University, 99164-2752, Pullman, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hudson", 
        "givenName": "R. S.", 
        "id": "sg:person.015027446223.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015027446223.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Aerospace Engineering and Engineering Mechanics, Iowa State University, 50011-3231, Ames, Iowa, USA", 
          "id": "http://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Department of Aerospace Engineering and Engineering Mechanics, Iowa State University, 50011-3231, Ames, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheeres", 
        "givenName": "D. J.", 
        "id": "sg:person.01210050602.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210050602.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physikalisches Institut, Universit\u00e4t Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Physikalisches Institut, Universit\u00e4t Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benz", 
        "givenName": "W.", 
        "id": "sg:person.01002751637.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002751637.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/360429a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015601582", 
          "https://doi.org/10.1038/360429a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-06", 
    "datePublishedReg": "1998-06-01", 
    "description": "Recent numerical studies1,2,3,4,5 suggest that \u2018rubble-pile\u2019 asteroids (gravitationally bound aggregates of collisional debris) are common in the Solar System, and that self-gravitation may equal or exceed material cohesion for planetary bodies as small as several hundred metres. Because analytical scaling relations for impact cratering and disruption6,7,8 do not extend to this size regime, where gravity and material strength are both important, detailed simulations are needed to predict how small asteroids evolve through impact, and also to ascertain whether powerful explosions offer a viable defence against bodies headed for a collision with Earth. Here we present simulations, using a smooth-particle hydrodynamics code9, of energetic impacts into small planetary bodies with internal structure ranging from solid rock to porous aggregate. We find that the outcome of a collision is very sensitive to the configuration of pre-existing fractures and voids in the target. A porous asteroid (or one with deep regolith) damps the propagation of the shock wave from the impactor, sheltering the most distant regions, while greatly enhancing the local deposition of energy. Multiple-component asteroids (such as contact binaries) are also protected, because the shock wave cannot traverse the discontinuity between the components. We conclude that the first impact to significantly fragment an asteroid may determine its subsequent collisional evolution, and that internal structure will greatly influence attempts to disrupt or deflect an asteroid or comet headed towards Earth.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/30911", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6684", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "393"
      }
    ], 
    "keywords": [
      "shock waves", 
      "pre-existing fractures", 
      "material strength", 
      "material cohesion", 
      "porous aggregates", 
      "analytical scaling relations", 
      "internal structure", 
      "detailed simulations", 
      "porous asteroids", 
      "solid rock", 
      "first impact", 
      "planetary bodies", 
      "local deposition", 
      "simulations", 
      "small planetary bodies", 
      "waves", 
      "energetic impact", 
      "size regime", 
      "solar system", 
      "subsequent collisional evolution", 
      "voids", 
      "impactor", 
      "powerful explosions", 
      "impact cratering", 
      "cratering", 
      "strength", 
      "structure", 
      "deposition", 
      "propagation", 
      "sized asteroids", 
      "configuration", 
      "energy", 
      "scaling relations", 
      "gravity", 
      "asteroids", 
      "collisional evolution", 
      "small asteroids", 
      "explosion", 
      "discontinuities", 
      "collisions", 
      "fractures", 
      "Earth", 
      "energetic collisions", 
      "regime", 
      "system", 
      "aggregates", 
      "rocks", 
      "impact", 
      "distant regions", 
      "components", 
      "body", 
      "cohesion", 
      "evolution", 
      "viable defense", 
      "region", 
      "comets", 
      "attempt", 
      "relation", 
      "target", 
      "disruption", 
      "defense", 
      "outcomes"
    ], 
    "name": "Disruption of kilometre-sized asteroids by energetic collisions", 
    "pagination": "437-440", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002888853"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/30911"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/30911", 
      "https://app.dimensions.ai/details/publication/pub.1002888853"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_269.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/30911"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/30911'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/30911'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/30911'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/30911'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      88 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/30911 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N82ef20db9f6d4017ac75dced24b44f1c
4 schema:citation sg:pub.10.1038/360429a0
5 schema:datePublished 1998-06
6 schema:datePublishedReg 1998-06-01
7 schema:description Recent numerical studies1,2,3,4,5 suggest that ‘rubble-pile’ asteroids (gravitationally bound aggregates of collisional debris) are common in the Solar System, and that self-gravitation may equal or exceed material cohesion for planetary bodies as small as several hundred metres. Because analytical scaling relations for impact cratering and disruption6,7,8 do not extend to this size regime, where gravity and material strength are both important, detailed simulations are needed to predict how small asteroids evolve through impact, and also to ascertain whether powerful explosions offer a viable defence against bodies headed for a collision with Earth. Here we present simulations, using a smooth-particle hydrodynamics code9, of energetic impacts into small planetary bodies with internal structure ranging from solid rock to porous aggregate. We find that the outcome of a collision is very sensitive to the configuration of pre-existing fractures and voids in the target. A porous asteroid (or one with deep regolith) damps the propagation of the shock wave from the impactor, sheltering the most distant regions, while greatly enhancing the local deposition of energy. Multiple-component asteroids (such as contact binaries) are also protected, because the shock wave cannot traverse the discontinuity between the components. We conclude that the first impact to significantly fragment an asteroid may determine its subsequent collisional evolution, and that internal structure will greatly influence attempts to disrupt or deflect an asteroid or comet headed towards Earth.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N1026793b78db46ff92fa48fcae3ad886
11 N39cf53397b7a40c78570c24de4242d62
12 sg:journal.1018957
13 schema:keywords Earth
14 aggregates
15 analytical scaling relations
16 asteroids
17 attempt
18 body
19 cohesion
20 collisional evolution
21 collisions
22 comets
23 components
24 configuration
25 cratering
26 defense
27 deposition
28 detailed simulations
29 discontinuities
30 disruption
31 distant regions
32 energetic collisions
33 energetic impact
34 energy
35 evolution
36 explosion
37 first impact
38 fractures
39 gravity
40 impact
41 impact cratering
42 impactor
43 internal structure
44 local deposition
45 material cohesion
46 material strength
47 outcomes
48 planetary bodies
49 porous aggregates
50 porous asteroids
51 powerful explosions
52 pre-existing fractures
53 propagation
54 regime
55 region
56 relation
57 rocks
58 scaling relations
59 shock waves
60 simulations
61 size regime
62 sized asteroids
63 small asteroids
64 small planetary bodies
65 solar system
66 solid rock
67 strength
68 structure
69 subsequent collisional evolution
70 system
71 target
72 viable defense
73 voids
74 waves
75 schema:name Disruption of kilometre-sized asteroids by energetic collisions
76 schema:pagination 437-440
77 schema:productId N000d9cb73da14feea03c58bfd8a9704b
78 N790c85537c5b4b3f873553a03f8c919d
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002888853
80 https://doi.org/10.1038/30911
81 schema:sdDatePublished 2022-08-04T16:53
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N7d3d1608f6054130b3c158c0df9a09e7
84 schema:url https://doi.org/10.1038/30911
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N000d9cb73da14feea03c58bfd8a9704b schema:name dimensions_id
89 schema:value pub.1002888853
90 rdf:type schema:PropertyValue
91 N1026793b78db46ff92fa48fcae3ad886 schema:issueNumber 6684
92 rdf:type schema:PublicationIssue
93 N39cf53397b7a40c78570c24de4242d62 schema:volumeNumber 393
94 rdf:type schema:PublicationVolume
95 N71d0278bdb364230a9379a835acb6f17 rdf:first sg:person.0773454667.00
96 rdf:rest N8dd73d9881bb454dafb51c51be1fe674
97 N790c85537c5b4b3f873553a03f8c919d schema:name doi
98 schema:value 10.1038/30911
99 rdf:type schema:PropertyValue
100 N7d3d1608f6054130b3c158c0df9a09e7 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N82ef20db9f6d4017ac75dced24b44f1c rdf:first sg:person.011326524611.15
103 rdf:rest N71d0278bdb364230a9379a835acb6f17
104 N8dd73d9881bb454dafb51c51be1fe674 rdf:first sg:person.015027446223.85
105 rdf:rest Nc9d79fdd3b2a45cba1177d7041be71c7
106 Nc9d79fdd3b2a45cba1177d7041be71c7 rdf:first sg:person.01210050602.47
107 rdf:rest Ne9892879756b4053b1073f3ccff84798
108 Ne9892879756b4053b1073f3ccff84798 rdf:first sg:person.01002751637.72
109 rdf:rest rdf:nil
110 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
111 schema:name Earth Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
114 schema:name Geology
115 rdf:type schema:DefinedTerm
116 sg:journal.1018957 schema:issn 0028-0836
117 1476-4687
118 schema:name Nature
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.01002751637.72 schema:affiliation grid-institutes:grid.5734.5
122 schema:familyName Benz
123 schema:givenName W.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002751637.72
125 rdf:type schema:Person
126 sg:person.011326524611.15 schema:affiliation grid-institutes:grid.30389.31
127 schema:familyName Asphaug
128 schema:givenName E.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011326524611.15
130 rdf:type schema:Person
131 sg:person.01210050602.47 schema:affiliation grid-institutes:grid.34421.30
132 schema:familyName Scheeres
133 schema:givenName D. J.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210050602.47
135 rdf:type schema:Person
136 sg:person.015027446223.85 schema:affiliation grid-institutes:grid.30064.31
137 schema:familyName Hudson
138 schema:givenName R. S.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015027446223.85
140 rdf:type schema:Person
141 sg:person.0773454667.00 schema:affiliation grid-institutes:grid.211367.0
142 schema:familyName Ostro
143 schema:givenName S. J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773454667.00
145 rdf:type schema:Person
146 sg:pub.10.1038/360429a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015601582
147 https://doi.org/10.1038/360429a0
148 rdf:type schema:CreativeWork
149 grid-institutes:grid.211367.0 schema:alternateName NASA Jet Propulsion Laboratory 300-233, Pasadena, 91109-8099, California, USA
150 schema:name NASA Jet Propulsion Laboratory 300-233, Pasadena, 91109-8099, California, USA
151 rdf:type schema:Organization
152 grid-institutes:grid.30064.31 schema:alternateName School of Electrical Engineering and Computer Science, Washington State University, 99164-2752, Pullman, Washington, USA
153 schema:name School of Electrical Engineering and Computer Science, Washington State University, 99164-2752, Pullman, Washington, USA
154 rdf:type schema:Organization
155 grid-institutes:grid.30389.31 schema:alternateName Department of Earth Sciences, University of California, 95064, Santa Cruz, California, USA
156 schema:name Department of Earth Sciences, University of California, 95064, Santa Cruz, California, USA
157 rdf:type schema:Organization
158 grid-institutes:grid.34421.30 schema:alternateName Department of Aerospace Engineering and Engineering Mechanics, Iowa State University, 50011-3231, Ames, Iowa, USA
159 schema:name Department of Aerospace Engineering and Engineering Mechanics, Iowa State University, 50011-3231, Ames, Iowa, USA
160 rdf:type schema:Organization
161 grid-institutes:grid.5734.5 schema:alternateName Physikalisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland
162 schema:name Physikalisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...