Rapid atmospheric CO2 variations and ocean circulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-04

AUTHORS

U. Siegenthaler, Th. Wenk

ABSTRACT

Studies on air trapped in old polar ice1,2 have shown that during the last ice age, the atmospheric carbon dioxide concentration was probably significantly lower than during the Holocene—about 200 p.p.m. rather than 270 p.p.m. Also, Stauffer et al.3 recently showed by detailed analyses of Greenland ice cores, that during the ice age, between about 30,000 and 40,000 yr BP, the atmospheric CO2 level probably varied between 200 and 260 p.p.m. These variations occurred parallel to climatic variations as indicated by δ18O of the ice; astonishingly, the changes took place within rather short times, no more than a few centuries or even less. Here we examine the hypothesis4 that CO2 variations arose from changes in ocean circulation that affected the distribution of chemical properties and thus of PCO2 in the surface waters of the world ocean. Such changes can take place in a rather short time, in contrast to changes of whole ocean properties. More... »

PAGES

624-626

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/308624a0

DOI

http://dx.doi.org/10.1038/308624a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039846419


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Institute, University of Bern, Sidlerstrasse 5, CH\u20133012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Physics Institute, University of Bern, Sidlerstrasse 5, CH\u20133012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siegenthaler", 
        "givenName": "U.", 
        "id": "sg:person.014160432065.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014160432065.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physics Institute, University of Bern, Sidlerstrasse 5, CH\u20133012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Physics Institute, University of Bern, Sidlerstrasse 5, CH\u20133012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wenk", 
        "givenName": "Th.", 
        "id": "sg:person.010642124750.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010642124750.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4899-5016-1_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089739932", 
          "https://doi.org/10.1007/978-1-4899-5016-1_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/306319a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039136043", 
          "https://doi.org/10.1038/306319a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/284155a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033082813", 
          "https://doi.org/10.1038/284155a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-8514-8_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019326340", 
          "https://doi.org/10.1007/978-94-009-8514-8_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/295220a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049483228", 
          "https://doi.org/10.1038/295220a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-04", 
    "datePublishedReg": "1984-04-01", 
    "description": "Studies on air trapped in old polar ice1,2 have shown that during the last ice age, the atmospheric carbon dioxide concentration was probably significantly lower than during the Holocene\u2014about 200 p.p.m. rather than 270 p.p.m. Also, Stauffer et al.3 recently showed by detailed analyses of Greenland ice cores, that during the ice age, between about 30,000 and 40,000 yr BP, the atmospheric CO2 level probably varied between 200 and 260 p.p.m. These variations occurred parallel to climatic variations as indicated by \u03b418O of the ice; astonishingly, the changes took place within rather short times, no more than a few centuries or even less. Here we examine the hypothesis4 that CO2 variations arose from changes in ocean circulation that affected the distribution of chemical properties and thus of PCO2 in the surface waters of the world ocean. Such changes can take place in a rather short time, in contrast to changes of whole ocean properties.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/308624a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5960", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "308"
      }
    ], 
    "keywords": [
      "ocean circulation", 
      "Ice Age", 
      "CO2 variations", 
      "atmospheric carbon dioxide concentration", 
      "Greenland ice cores", 
      "atmospheric CO2 variations", 
      "last ice age", 
      "atmospheric CO2 levels", 
      "carbon dioxide concentration", 
      "ice cores", 
      "yr BP", 
      "ocean properties", 
      "world's oceans", 
      "climatic variations", 
      "surface water", 
      "CO2 levels", 
      "dioxide concentration", 
      "circulation", 
      "variation", 
      "\u03b418O", 
      "Holocene", 
      "Ocean", 
      "ice", 
      "hypothesis4", 
      "such changes", 
      "pCO2", 
      "chemical properties", 
      "changes", 
      "water", 
      "core", 
      "BP", 
      "detailed analysis", 
      "et al", 
      "place", 
      "century", 
      "age", 
      "distribution", 
      "air", 
      "al", 
      "short time", 
      "concentration", 
      "time", 
      "contrast", 
      "analysis", 
      "parallel", 
      "properties", 
      "study", 
      "levels", 
      "Stauffer et al"
    ], 
    "name": "Rapid atmospheric CO2 variations and ocean circulation", 
    "pagination": "624-626", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039846419"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/308624a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/308624a0", 
      "https://app.dimensions.ai/details/publication/pub.1039846419"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T21:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_158.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/308624a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/308624a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/308624a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/308624a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/308624a0'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      80 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/308624a0 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Na237283e9df04d8b8b8a6fc822509523
4 schema:citation sg:pub.10.1007/978-1-4899-5016-1_22
5 sg:pub.10.1007/978-94-009-8514-8_5
6 sg:pub.10.1038/284155a0
7 sg:pub.10.1038/295220a0
8 sg:pub.10.1038/306319a0
9 schema:datePublished 1984-04
10 schema:datePublishedReg 1984-04-01
11 schema:description Studies on air trapped in old polar ice1,2 have shown that during the last ice age, the atmospheric carbon dioxide concentration was probably significantly lower than during the Holocene—about 200 p.p.m. rather than 270 p.p.m. Also, Stauffer et al.3 recently showed by detailed analyses of Greenland ice cores, that during the ice age, between about 30,000 and 40,000 yr BP, the atmospheric CO2 level probably varied between 200 and 260 p.p.m. These variations occurred parallel to climatic variations as indicated by δ18O of the ice; astonishingly, the changes took place within rather short times, no more than a few centuries or even less. Here we examine the hypothesis4 that CO2 variations arose from changes in ocean circulation that affected the distribution of chemical properties and thus of PCO2 in the surface waters of the world ocean. Such changes can take place in a rather short time, in contrast to changes of whole ocean properties.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N1ec6301a83b5432dbeb540b843092175
16 Nb44fc4b238864a2ca1851c55bceaeb2f
17 sg:journal.1018957
18 schema:keywords BP
19 CO2 levels
20 CO2 variations
21 Greenland ice cores
22 Holocene
23 Ice Age
24 Ocean
25 Stauffer et al
26 age
27 air
28 al
29 analysis
30 atmospheric CO2 levels
31 atmospheric CO2 variations
32 atmospheric carbon dioxide concentration
33 carbon dioxide concentration
34 century
35 changes
36 chemical properties
37 circulation
38 climatic variations
39 concentration
40 contrast
41 core
42 detailed analysis
43 dioxide concentration
44 distribution
45 et al
46 hypothesis4
47 ice
48 ice cores
49 last ice age
50 levels
51 ocean circulation
52 ocean properties
53 pCO2
54 parallel
55 place
56 properties
57 short time
58 study
59 such changes
60 surface water
61 time
62 variation
63 water
64 world's oceans
65 yr BP
66 δ18O
67 schema:name Rapid atmospheric CO2 variations and ocean circulation
68 schema:pagination 624-626
69 schema:productId N875ccc8bbc6f48c7931a0ada05f610a7
70 Nce00520155924001a592e99ec9f2b980
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039846419
72 https://doi.org/10.1038/308624a0
73 schema:sdDatePublished 2022-06-01T21:58
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nce35254c44994392b77449be8b0d4ef6
76 schema:url https://doi.org/10.1038/308624a0
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N1ec6301a83b5432dbeb540b843092175 schema:issueNumber 5960
81 rdf:type schema:PublicationIssue
82 N3da64e63c01f4d8f9fd43843c5a83c3d rdf:first sg:person.010642124750.40
83 rdf:rest rdf:nil
84 N875ccc8bbc6f48c7931a0ada05f610a7 schema:name doi
85 schema:value 10.1038/308624a0
86 rdf:type schema:PropertyValue
87 Na237283e9df04d8b8b8a6fc822509523 rdf:first sg:person.014160432065.37
88 rdf:rest N3da64e63c01f4d8f9fd43843c5a83c3d
89 Nb44fc4b238864a2ca1851c55bceaeb2f schema:volumeNumber 308
90 rdf:type schema:PublicationVolume
91 Nce00520155924001a592e99ec9f2b980 schema:name dimensions_id
92 schema:value pub.1039846419
93 rdf:type schema:PropertyValue
94 Nce35254c44994392b77449be8b0d4ef6 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
97 schema:name Earth Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
100 schema:name Oceanography
101 rdf:type schema:DefinedTerm
102 sg:journal.1018957 schema:issn 0028-0836
103 1476-4687
104 schema:name Nature
105 schema:publisher Springer Nature
106 rdf:type schema:Periodical
107 sg:person.010642124750.40 schema:affiliation grid-institutes:grid.5734.5
108 schema:familyName Wenk
109 schema:givenName Th.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010642124750.40
111 rdf:type schema:Person
112 sg:person.014160432065.37 schema:affiliation grid-institutes:grid.5734.5
113 schema:familyName Siegenthaler
114 schema:givenName U.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014160432065.37
116 rdf:type schema:Person
117 sg:pub.10.1007/978-1-4899-5016-1_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089739932
118 https://doi.org/10.1007/978-1-4899-5016-1_22
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-94-009-8514-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019326340
121 https://doi.org/10.1007/978-94-009-8514-8_5
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/284155a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033082813
124 https://doi.org/10.1038/284155a0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/295220a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049483228
127 https://doi.org/10.1038/295220a0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/306319a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039136043
130 https://doi.org/10.1038/306319a0
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.5734.5 schema:alternateName Physics Institute, University of Bern, Sidlerstrasse 5, CH–3012, Bern, Switzerland
133 schema:name Physics Institute, University of Bern, Sidlerstrasse 5, CH–3012, Bern, Switzerland
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...