Magnesium gates glutamate-activated channels in mouse central neurones View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-02

AUTHORS

L Nowak, P Bregestovski, P Ascher, A Herbet, A Prochiantz

ABSTRACT

The responses of vertebrate neurones to glutamate involve at least three receptor types. One of these, the NMDA receptor (so called because of its specific activation by N-methyl-D-aspartate), induces responses presenting a peculiar voltage sensitivity. Above resting potential, the current induced by a given dose of glutamate (or NMDA) increases when the cell is depolarized. This is contrary to what is observed at classical excitatory synapses, and recalls the properties of 'regenerative' systems like the Na+ conductance of the action potential. Indeed, recent studies of L-glutamate, L-aspartate and NMDA-induced currents have indicated that the current-voltage (I-V) relationship can show a region of 'negative conductance' and that the application of these agonists can lead to a regenerative depolarization. Furthermore, the NMDA response is greatly potentiated by reducing the extracellular Mg2+ concentration [( Mg2+]o) below the physiological level (approximately 1 mM). By analysing the responses of mouse central neurones to glutamate using the patch-clamp technique, we have now found a link between voltage sensitivity and Mg2+ sensitivity. In Mg2+-free solutions, L-glutamate, L-aspartate and NMDA open cation channels, the properties of which are voltage independent. In the presence of Mg2+, the single-channel currents measured at resting potential are chopped in bursts and the probability of opening of the channels is reduced. Both effects increase steeply with hyperpolarization, thereby accounting for the negative slope of the I-V relationship of the glutamate response. Thus, the voltage dependence of the NMDA receptor-linked conductance appears to be a consequence of the voltage dependence of the Mg2+ block and its interpretation does not require the implication of an intramembrane voltage-dependent 'gate'. More... »

PAGES

462-465

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/307462a0

DOI

http://dx.doi.org/10.1038/307462a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047554393

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6320006


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aspartic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Conductivity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutamates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ion Channels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnesium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "N-Methylaspartate", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Nowak", 
        "givenName": "L", 
        "id": "sg:person.0664455652.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664455652.24"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Bregestovski", 
        "givenName": "P", 
        "id": "sg:person.016403520704.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403520704.07"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Ascher", 
        "givenName": "P", 
        "id": "sg:person.0640030605.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640030605.18"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Herbet", 
        "givenName": "A", 
        "id": "sg:person.077464525.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.077464525.40"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Prochiantz", 
        "givenName": "A", 
        "id": "sg:person.01210170000.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210170000.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1113/jphysiol.1980.sp013443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000429608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(83)91323-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003643067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(83)91323-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003643067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/297422a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012683361", 
          "https://doi.org/10.1038/297422a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00656997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014806333", 
          "https://doi.org/10.1007/bf00656997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00656997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014806333", 
          "https://doi.org/10.1007/bf00656997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1978.sp012300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017713065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1983.sp014741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018098420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1085/jgp.58.4.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027260860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1977.sp012099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031838766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00615524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032713544", 
          "https://doi.org/10.1007/bf00615524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00615524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032713544", 
          "https://doi.org/10.1007/bf00615524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1976.sp011593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041296892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1982.sp014374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044344880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1978.sp012355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045057424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bb.06.060177.002021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046923281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(82)90575-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048106101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(82)90575-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048106101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1976.sp011530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048117414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pa.21.040181.001121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052159500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1978.sp012267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052876002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081606706", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-02", 
    "datePublishedReg": "1984-02-01", 
    "description": "The responses of vertebrate neurones to glutamate involve at least three receptor types. One of these, the NMDA receptor (so called because of its specific activation by N-methyl-D-aspartate), induces responses presenting a peculiar voltage sensitivity. Above resting potential, the current induced by a given dose of glutamate (or NMDA) increases when the cell is depolarized. This is contrary to what is observed at classical excitatory synapses, and recalls the properties of 'regenerative' systems like the Na+ conductance of the action potential. Indeed, recent studies of L-glutamate, L-aspartate and NMDA-induced currents have indicated that the current-voltage (I-V) relationship can show a region of 'negative conductance' and that the application of these agonists can lead to a regenerative depolarization. Furthermore, the NMDA response is greatly potentiated by reducing the extracellular Mg2+ concentration [( Mg2+]o) below the physiological level (approximately 1 mM). By analysing the responses of mouse central neurones to glutamate using the patch-clamp technique, we have now found a link between voltage sensitivity and Mg2+ sensitivity. In Mg2+-free solutions, L-glutamate, L-aspartate and NMDA open cation channels, the properties of which are voltage independent. In the presence of Mg2+, the single-channel currents measured at resting potential are chopped in bursts and the probability of opening of the channels is reduced. Both effects increase steeply with hyperpolarization, thereby accounting for the negative slope of the I-V relationship of the glutamate response. Thus, the voltage dependence of the NMDA receptor-linked conductance appears to be a consequence of the voltage dependence of the Mg2+ block and its interpretation does not require the implication of an intramembrane voltage-dependent 'gate'.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/307462a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5950", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "307"
      }
    ], 
    "name": "Magnesium gates glutamate-activated channels in mouse central neurones", 
    "pagination": "462-465", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2890b671c3211aa3b0b62d9d3c491868f1e59d911194c421b878d3a6abf3d01"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6320006"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/307462a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047554393"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/307462a0", 
      "https://app.dimensions.ai/details/publication/pub.1047554393"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/307462a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/307462a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/307462a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/307462a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/307462a0'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      59 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/307462a0 schema:about N1f55c908eeb14b3e9aaf5ef83e3d8de5
2 N3aca704dd26b48768a1531c017955a15
3 N558bd6db1cfe4014b4df7b5bc2786335
4 N5fbe5b763fe740c6921ebed03a955b48
5 N6fb78da067734a848d1057ebc215494f
6 Nacfa5e2f1b3c47beaec49da49704231d
7 Nb9f862fad9ec412f9850bdceed48d826
8 Nd3cd40abdd5140839b1f4d821f9d45de
9 Nde1f766e76fe492cbb610a51b325b544
10 Ne854fd5562ea4e59800019aadeb4b88f
11 Nebf1c219fd2641148f7a57c54ccb7e95
12 Nfc007e64b11f47ebb7d9abedd44ce999
13 anzsrc-for:06
14 anzsrc-for:0601
15 schema:author Ncaea790f5e904f968a56018ea357e26e
16 schema:citation sg:pub.10.1007/bf00615524
17 sg:pub.10.1007/bf00656997
18 sg:pub.10.1038/297422a0
19 https://app.dimensions.ai/details/publication/pub.1081606706
20 https://doi.org/10.1016/0006-8993(82)90575-3
21 https://doi.org/10.1016/0006-8993(83)91323-9
22 https://doi.org/10.1085/jgp.58.4.413
23 https://doi.org/10.1113/jphysiol.1976.sp011530
24 https://doi.org/10.1113/jphysiol.1976.sp011593
25 https://doi.org/10.1113/jphysiol.1977.sp012099
26 https://doi.org/10.1113/jphysiol.1978.sp012267
27 https://doi.org/10.1113/jphysiol.1978.sp012300
28 https://doi.org/10.1113/jphysiol.1978.sp012355
29 https://doi.org/10.1113/jphysiol.1980.sp013443
30 https://doi.org/10.1113/jphysiol.1982.sp014374
31 https://doi.org/10.1113/jphysiol.1983.sp014741
32 https://doi.org/10.1146/annurev.bb.06.060177.002021
33 https://doi.org/10.1146/annurev.pa.21.040181.001121
34 schema:datePublished 1984-02
35 schema:datePublishedReg 1984-02-01
36 schema:description The responses of vertebrate neurones to glutamate involve at least three receptor types. One of these, the NMDA receptor (so called because of its specific activation by N-methyl-D-aspartate), induces responses presenting a peculiar voltage sensitivity. Above resting potential, the current induced by a given dose of glutamate (or NMDA) increases when the cell is depolarized. This is contrary to what is observed at classical excitatory synapses, and recalls the properties of 'regenerative' systems like the Na+ conductance of the action potential. Indeed, recent studies of L-glutamate, L-aspartate and NMDA-induced currents have indicated that the current-voltage (I-V) relationship can show a region of 'negative conductance' and that the application of these agonists can lead to a regenerative depolarization. Furthermore, the NMDA response is greatly potentiated by reducing the extracellular Mg2+ concentration [( Mg2+]o) below the physiological level (approximately 1 mM). By analysing the responses of mouse central neurones to glutamate using the patch-clamp technique, we have now found a link between voltage sensitivity and Mg2+ sensitivity. In Mg2+-free solutions, L-glutamate, L-aspartate and NMDA open cation channels, the properties of which are voltage independent. In the presence of Mg2+, the single-channel currents measured at resting potential are chopped in bursts and the probability of opening of the channels is reduced. Both effects increase steeply with hyperpolarization, thereby accounting for the negative slope of the I-V relationship of the glutamate response. Thus, the voltage dependence of the NMDA receptor-linked conductance appears to be a consequence of the voltage dependence of the Mg2+ block and its interpretation does not require the implication of an intramembrane voltage-dependent 'gate'.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N15e7659b23f8428390cfcc2e2fc12489
41 N821a889559704d7e9368d7493a4739c2
42 sg:journal.1018957
43 schema:name Magnesium gates glutamate-activated channels in mouse central neurones
44 schema:pagination 462-465
45 schema:productId N195e6736b51848d3a9a103776aec0e50
46 N98d346814f8f45e58a5d8be89965f448
47 Na0698752f1264e82b776187b54cbb2dc
48 Nb7ebe48df9b247d5a361d0c7469cdf1e
49 Nb968f4848c2c4c9482a945b956cd33a4
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047554393
51 https://doi.org/10.1038/307462a0
52 schema:sdDatePublished 2019-04-11T01:47
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N1e95105571c9443faddafac2f6191f1e
55 schema:url http://www.nature.com/articles/307462a0
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0a31012ba6ed4793a497cf278b661e83 rdf:first sg:person.0640030605.18
60 rdf:rest N158f9d81ce334fb2a3804c7a0ce95648
61 N158f9d81ce334fb2a3804c7a0ce95648 rdf:first sg:person.077464525.40
62 rdf:rest Nec2d49d17bca4ac987180d856ffbfa1c
63 N15e7659b23f8428390cfcc2e2fc12489 schema:issueNumber 5950
64 rdf:type schema:PublicationIssue
65 N195e6736b51848d3a9a103776aec0e50 schema:name readcube_id
66 schema:value e2890b671c3211aa3b0b62d9d3c491868f1e59d911194c421b878d3a6abf3d01
67 rdf:type schema:PropertyValue
68 N1e95105571c9443faddafac2f6191f1e schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N1f55c908eeb14b3e9aaf5ef83e3d8de5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Brain
72 rdf:type schema:DefinedTerm
73 N3aca704dd26b48768a1531c017955a15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Magnesium
75 rdf:type schema:DefinedTerm
76 N558bd6db1cfe4014b4df7b5bc2786335 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Mice
78 rdf:type schema:DefinedTerm
79 N5fbe5b763fe740c6921ebed03a955b48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Kinetics
81 rdf:type schema:DefinedTerm
82 N6fb78da067734a848d1057ebc215494f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Electric Conductivity
84 rdf:type schema:DefinedTerm
85 N821a889559704d7e9368d7493a4739c2 schema:volumeNumber 307
86 rdf:type schema:PublicationVolume
87 N9475c0c74f91401c84939bcb25974c98 rdf:first sg:person.016403520704.07
88 rdf:rest N0a31012ba6ed4793a497cf278b661e83
89 N98d346814f8f45e58a5d8be89965f448 schema:name doi
90 schema:value 10.1038/307462a0
91 rdf:type schema:PropertyValue
92 Na0698752f1264e82b776187b54cbb2dc schema:name nlm_unique_id
93 schema:value 0410462
94 rdf:type schema:PropertyValue
95 Nacfa5e2f1b3c47beaec49da49704231d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name N-Methylaspartate
97 rdf:type schema:DefinedTerm
98 Nb7ebe48df9b247d5a361d0c7469cdf1e schema:name pubmed_id
99 schema:value 6320006
100 rdf:type schema:PropertyValue
101 Nb968f4848c2c4c9482a945b956cd33a4 schema:name dimensions_id
102 schema:value pub.1047554393
103 rdf:type schema:PropertyValue
104 Nb9f862fad9ec412f9850bdceed48d826 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Glutamates
106 rdf:type schema:DefinedTerm
107 Ncaea790f5e904f968a56018ea357e26e rdf:first sg:person.0664455652.24
108 rdf:rest N9475c0c74f91401c84939bcb25974c98
109 Nd3cd40abdd5140839b1f4d821f9d45de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Animals
111 rdf:type schema:DefinedTerm
112 Nde1f766e76fe492cbb610a51b325b544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Aspartic Acid
114 rdf:type schema:DefinedTerm
115 Ne854fd5562ea4e59800019aadeb4b88f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Ion Channels
117 rdf:type schema:DefinedTerm
118 Nebf1c219fd2641148f7a57c54ccb7e95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Cells, Cultured
120 rdf:type schema:DefinedTerm
121 Nec2d49d17bca4ac987180d856ffbfa1c rdf:first sg:person.01210170000.34
122 rdf:rest rdf:nil
123 Nfc007e64b11f47ebb7d9abedd44ce999 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Membrane Potentials
125 rdf:type schema:DefinedTerm
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biochemistry and Cell Biology
131 rdf:type schema:DefinedTerm
132 sg:journal.1018957 schema:issn 0090-0028
133 1476-4687
134 schema:name Nature
135 rdf:type schema:Periodical
136 sg:person.01210170000.34 schema:familyName Prochiantz
137 schema:givenName A
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210170000.34
139 rdf:type schema:Person
140 sg:person.016403520704.07 schema:familyName Bregestovski
141 schema:givenName P
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403520704.07
143 rdf:type schema:Person
144 sg:person.0640030605.18 schema:familyName Ascher
145 schema:givenName P
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640030605.18
147 rdf:type schema:Person
148 sg:person.0664455652.24 schema:familyName Nowak
149 schema:givenName L
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664455652.24
151 rdf:type schema:Person
152 sg:person.077464525.40 schema:familyName Herbet
153 schema:givenName A
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.077464525.40
155 rdf:type schema:Person
156 sg:pub.10.1007/bf00615524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032713544
157 https://doi.org/10.1007/bf00615524
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bf00656997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014806333
160 https://doi.org/10.1007/bf00656997
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/297422a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012683361
163 https://doi.org/10.1038/297422a0
164 rdf:type schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1081606706 schema:CreativeWork
166 https://doi.org/10.1016/0006-8993(82)90575-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048106101
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0006-8993(83)91323-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003643067
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1085/jgp.58.4.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027260860
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1113/jphysiol.1976.sp011530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048117414
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1113/jphysiol.1976.sp011593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041296892
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1113/jphysiol.1977.sp012099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031838766
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1113/jphysiol.1978.sp012267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052876002
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1113/jphysiol.1978.sp012300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017713065
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1113/jphysiol.1978.sp012355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045057424
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1113/jphysiol.1980.sp013443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000429608
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1113/jphysiol.1982.sp014374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044344880
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1113/jphysiol.1983.sp014741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018098420
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1146/annurev.bb.06.060177.002021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046923281
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1146/annurev.pa.21.040181.001121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052159500
193 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...