Viscoelastic properties of erythrocyte membranes in high-frequency electric fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-01

AUTHORS

H Engelhardt, H Gaub, E Sackmann

ABSTRACT

The high deformability of erythrocytes which is essential for their transport through the capillaries depends critically on their discoid shape and on the elasticity of the plasma membrane, which may be determined by interactions of the cytoskeleton, the lipid/protein leaflet and the glycocalyx. Although techniques exist for measurement of the static elastic properties of erythrocytes, the cells are continuously deformed in vivo, the stress varying within periods of a few seconds. Thus dynamic elastic behaviour is essential for their physiological function. We present here a novel means of measuring the dynamic elastic constants of the red cell based on the transient deformation of individual cells in an inhomogeneous high-frequency (HF) electric field. By microscopy it is possible to record cellular elongations as small as 200 nm occurring within time scales of 1 ms. A main advantage is that the cellular response is linear and thus can be more readily interpreted theoretically. We have observed a creep function consisting of two exponentials with response times of 0.1 s and 1 s, which can be described in terms of a simple viscoelastic model. A remarkable temperature dependence of the membrane elasticity between 25 degrees C and 15 degrees C is observed for freshly drawn cells but not for trypsinized ones. More... »

PAGES

378

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/307378a0

DOI

http://dx.doi.org/10.1038/307378a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002735943

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6694733


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electricity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocyte Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trypsin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viscosity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Engelhardt", 
        "givenName": "H", 
        "type": "Person"
      }, 
      {
        "familyName": "Gaub", 
        "givenName": "H", 
        "id": "sg:person.01217747122.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217747122.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Sackmann", 
        "givenName": "E", 
        "id": "sg:person.01077324047.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077324047.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0304-4157(82)90001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006015877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4157(82)90001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006015877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0026-2862(73)90086-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006220516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(80)85124-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006902803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(76)90422-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011433641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(76)90422-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011433641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.198103251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015403232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(82)84526-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027983003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(79)85239-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028122528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(64)86784-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034320359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(81)90497-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035581490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01868644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040437874", 
          "https://doi.org/10.1007/bf01868644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01868644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040437874", 
          "https://doi.org/10.1007/bf01868644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(80)90247-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040829420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(80)90247-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040829420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00405493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077870", 
          "https://doi.org/10.1007/bf00405493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00405493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077870", 
          "https://doi.org/10.1007/bf00405493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:0197500360110103500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056989369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3138234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062102444"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-01", 
    "datePublishedReg": "1984-01-01", 
    "description": "The high deformability of erythrocytes which is essential for their transport through the capillaries depends critically on their discoid shape and on the elasticity of the plasma membrane, which may be determined by interactions of the cytoskeleton, the lipid/protein leaflet and the glycocalyx. Although techniques exist for measurement of the static elastic properties of erythrocytes, the cells are continuously deformed in vivo, the stress varying within periods of a few seconds. Thus dynamic elastic behaviour is essential for their physiological function. We present here a novel means of measuring the dynamic elastic constants of the red cell based on the transient deformation of individual cells in an inhomogeneous high-frequency (HF) electric field. By microscopy it is possible to record cellular elongations as small as 200 nm occurring within time scales of 1 ms. A main advantage is that the cellular response is linear and thus can be more readily interpreted theoretically. We have observed a creep function consisting of two exponentials with response times of 0.1 s and 1 s, which can be described in terms of a simple viscoelastic model. A remarkable temperature dependence of the membrane elasticity between 25 degrees C and 15 degrees C is observed for freshly drawn cells but not for trypsinized ones.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/307378a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5949", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "307"
      }
    ], 
    "name": "Viscoelastic properties of erythrocyte membranes in high-frequency electric fields", 
    "pagination": "378", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d06f45b1a896566fceb7753d5b18f638348c575f59d4d02f5e02735ea07a87a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6694733"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/307378a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002735943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/307378a0", 
      "https://app.dimensions.ai/details/publication/pub.1002735943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/307378a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/307378a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/307378a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/307378a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/307378a0'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      49 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/307378a0 schema:about N3c7158123cdd461f9d4d8b7e9b53eef0
2 N446f00c2f11e4f53b5f4c44429f49fd8
3 N60cc32d1d28e49f4b1c889c076523aad
4 N625e29fb02a848418bd6ee40ce857230
5 N7c4a6661ec7a44efb7dc4be1d0066fe4
6 N96a8954e7e7a4e4d92a8d74d9eae3270
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author Nb6d4a5e7600547998de164388ba0b512
10 schema:citation sg:pub.10.1007/bf00405493
11 sg:pub.10.1007/bf01868644
12 https://doi.org/10.1002/anie.198103251
13 https://doi.org/10.1016/0005-2736(76)90422-3
14 https://doi.org/10.1016/0005-2736(80)90247-3
15 https://doi.org/10.1016/0026-2862(73)90086-1
16 https://doi.org/10.1016/0092-8674(81)90497-9
17 https://doi.org/10.1016/0304-4157(82)90001-6
18 https://doi.org/10.1016/s0006-3495(64)86784-9
19 https://doi.org/10.1016/s0006-3495(79)85239-x
20 https://doi.org/10.1016/s0006-3495(80)85124-1
21 https://doi.org/10.1016/s0006-3495(82)84526-8
22 https://doi.org/10.1051/jphys:0197500360110103500
23 https://doi.org/10.1115/1.3138234
24 schema:datePublished 1984-01
25 schema:datePublishedReg 1984-01-01
26 schema:description The high deformability of erythrocytes which is essential for their transport through the capillaries depends critically on their discoid shape and on the elasticity of the plasma membrane, which may be determined by interactions of the cytoskeleton, the lipid/protein leaflet and the glycocalyx. Although techniques exist for measurement of the static elastic properties of erythrocytes, the cells are continuously deformed in vivo, the stress varying within periods of a few seconds. Thus dynamic elastic behaviour is essential for their physiological function. We present here a novel means of measuring the dynamic elastic constants of the red cell based on the transient deformation of individual cells in an inhomogeneous high-frequency (HF) electric field. By microscopy it is possible to record cellular elongations as small as 200 nm occurring within time scales of 1 ms. A main advantage is that the cellular response is linear and thus can be more readily interpreted theoretically. We have observed a creep function consisting of two exponentials with response times of 0.1 s and 1 s, which can be described in terms of a simple viscoelastic model. A remarkable temperature dependence of the membrane elasticity between 25 degrees C and 15 degrees C is observed for freshly drawn cells but not for trypsinized ones.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N0d72bd1b85d045f3961f15d823227052
31 Nc1767dea40dd4d468b4a33beda0e471b
32 sg:journal.1018957
33 schema:name Viscoelastic properties of erythrocyte membranes in high-frequency electric fields
34 schema:pagination 378
35 schema:productId N1752ea79db474b6c9024b9d578e72d58
36 N41a19707f0fc4e25917c340d5924e03b
37 N819017e9c9bb43f185c14c4df285e0f0
38 N8337590a5d7b4afeae0ee6f7a8b09ce5
39 Nba6502b1b8064949a352ea6d0f1f5803
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002735943
41 https://doi.org/10.1038/307378a0
42 schema:sdDatePublished 2019-04-11T00:03
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N26ce3aee9cfa4bdd9c446defa156eeaa
45 schema:url https://www.nature.com/articles/307378a0
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0d72bd1b85d045f3961f15d823227052 schema:volumeNumber 307
50 rdf:type schema:PublicationVolume
51 N1752ea79db474b6c9024b9d578e72d58 schema:name doi
52 schema:value 10.1038/307378a0
53 rdf:type schema:PropertyValue
54 N26ce3aee9cfa4bdd9c446defa156eeaa schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N3c7158123cdd461f9d4d8b7e9b53eef0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Viscosity
58 rdf:type schema:DefinedTerm
59 N41a19707f0fc4e25917c340d5924e03b schema:name nlm_unique_id
60 schema:value 0410462
61 rdf:type schema:PropertyValue
62 N446f00c2f11e4f53b5f4c44429f49fd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Electricity
64 rdf:type schema:DefinedTerm
65 N60cc32d1d28e49f4b1c889c076523aad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Erythrocyte Membrane
67 rdf:type schema:DefinedTerm
68 N625e29fb02a848418bd6ee40ce857230 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Trypsin
70 rdf:type schema:DefinedTerm
71 N7c4a6661ec7a44efb7dc4be1d0066fe4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Humans
73 rdf:type schema:DefinedTerm
74 N819017e9c9bb43f185c14c4df285e0f0 schema:name readcube_id
75 schema:value 0d06f45b1a896566fceb7753d5b18f638348c575f59d4d02f5e02735ea07a87a
76 rdf:type schema:PropertyValue
77 N8337590a5d7b4afeae0ee6f7a8b09ce5 schema:name dimensions_id
78 schema:value pub.1002735943
79 rdf:type schema:PropertyValue
80 N96a8954e7e7a4e4d92a8d74d9eae3270 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Elasticity
82 rdf:type schema:DefinedTerm
83 Na722b2464eb64baebf3fcaf7da231617 rdf:first sg:person.01217747122.19
84 rdf:rest Nba8aa19e0c374ba2aad79710e55b6e01
85 Nb6d4a5e7600547998de164388ba0b512 rdf:first Nca955f792c7a4a9f80843b71eb0d564c
86 rdf:rest Na722b2464eb64baebf3fcaf7da231617
87 Nba6502b1b8064949a352ea6d0f1f5803 schema:name pubmed_id
88 schema:value 6694733
89 rdf:type schema:PropertyValue
90 Nba8aa19e0c374ba2aad79710e55b6e01 rdf:first sg:person.01077324047.32
91 rdf:rest rdf:nil
92 Nc1767dea40dd4d468b4a33beda0e471b schema:issueNumber 5949
93 rdf:type schema:PublicationIssue
94 Nca955f792c7a4a9f80843b71eb0d564c schema:familyName Engelhardt
95 schema:givenName H
96 rdf:type schema:Person
97 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
98 schema:name Biological Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
101 schema:name Biochemistry and Cell Biology
102 rdf:type schema:DefinedTerm
103 sg:journal.1018957 schema:issn 0090-0028
104 1476-4687
105 schema:name Nature
106 rdf:type schema:Periodical
107 sg:person.01077324047.32 schema:familyName Sackmann
108 schema:givenName E
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077324047.32
110 rdf:type schema:Person
111 sg:person.01217747122.19 schema:familyName Gaub
112 schema:givenName H
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217747122.19
114 rdf:type schema:Person
115 sg:pub.10.1007/bf00405493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047077870
116 https://doi.org/10.1007/bf00405493
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf01868644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040437874
119 https://doi.org/10.1007/bf01868644
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/anie.198103251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015403232
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0005-2736(76)90422-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011433641
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0005-2736(80)90247-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040829420
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0026-2862(73)90086-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006220516
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0092-8674(81)90497-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035581490
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0304-4157(82)90001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006015877
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0006-3495(64)86784-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034320359
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0006-3495(79)85239-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028122528
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0006-3495(80)85124-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006902803
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0006-3495(82)84526-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027983003
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1051/jphys:0197500360110103500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056989369
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1115/1.3138234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062102444
144 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...