Viscoelastic properties of erythrocyte membranes in high-frequency electric fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-01

AUTHORS

H Engelhardt, H Gaub, E Sackmann

ABSTRACT

The high deformability of erythrocytes which is essential for their transport through the capillaries depends critically on their discoid shape and on the elasticity of the plasma membrane, which may be determined by interactions of the cytoskeleton, the lipid/protein leaflet and the glycocalyx. Although techniques exist for measurement of the static elastic properties of erythrocytes, the cells are continuously deformed in vivo, the stress varying within periods of a few seconds. Thus dynamic elastic behaviour is essential for their physiological function. We present here a novel means of measuring the dynamic elastic constants of the red cell based on the transient deformation of individual cells in an inhomogeneous high-frequency (HF) electric field. By microscopy it is possible to record cellular elongations as small as 200 nm occurring within time scales of 1 ms. A main advantage is that the cellular response is linear and thus can be more readily interpreted theoretically. We have observed a creep function consisting of two exponentials with response times of 0.1 s and 1 s, which can be described in terms of a simple viscoelastic model. A remarkable temperature dependence of the membrane elasticity between 25 degrees C and 15 degrees C is observed for freshly drawn cells but not for trypsinized ones. More... »

PAGES

378

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/307378a0

DOI

http://dx.doi.org/10.1038/307378a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002735943

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6694733


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electricity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocyte Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trypsin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viscosity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Engelhardt", 
        "givenName": "H", 
        "type": "Person"
      }, 
      {
        "familyName": "Gaub", 
        "givenName": "H", 
        "id": "sg:person.01217747122.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217747122.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Sackmann", 
        "givenName": "E", 
        "id": "sg:person.01077324047.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077324047.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0304-4157(82)90001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006015877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4157(82)90001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006015877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0026-2862(73)90086-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006220516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(80)85124-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006902803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(76)90422-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011433641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(76)90422-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011433641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.198103251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015403232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(82)84526-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027983003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(79)85239-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028122528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(64)86784-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034320359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(81)90497-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035581490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01868644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040437874", 
          "https://doi.org/10.1007/bf01868644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01868644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040437874", 
          "https://doi.org/10.1007/bf01868644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(80)90247-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040829420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(80)90247-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040829420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00405493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077870", 
          "https://doi.org/10.1007/bf00405493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00405493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077870", 
          "https://doi.org/10.1007/bf00405493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:0197500360110103500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056989369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3138234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062102444"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-01", 
    "datePublishedReg": "1984-01-01", 
    "description": "The high deformability of erythrocytes which is essential for their transport through the capillaries depends critically on their discoid shape and on the elasticity of the plasma membrane, which may be determined by interactions of the cytoskeleton, the lipid/protein leaflet and the glycocalyx. Although techniques exist for measurement of the static elastic properties of erythrocytes, the cells are continuously deformed in vivo, the stress varying within periods of a few seconds. Thus dynamic elastic behaviour is essential for their physiological function. We present here a novel means of measuring the dynamic elastic constants of the red cell based on the transient deformation of individual cells in an inhomogeneous high-frequency (HF) electric field. By microscopy it is possible to record cellular elongations as small as 200 nm occurring within time scales of 1 ms. A main advantage is that the cellular response is linear and thus can be more readily interpreted theoretically. We have observed a creep function consisting of two exponentials with response times of 0.1 s and 1 s, which can be described in terms of a simple viscoelastic model. A remarkable temperature dependence of the membrane elasticity between 25 degrees C and 15 degrees C is observed for freshly drawn cells but not for trypsinized ones.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/307378a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5949", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "307"
      }
    ], 
    "name": "Viscoelastic properties of erythrocyte membranes in high-frequency electric fields", 
    "pagination": "378", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d06f45b1a896566fceb7753d5b18f638348c575f59d4d02f5e02735ea07a87a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6694733"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/307378a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002735943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/307378a0", 
      "https://app.dimensions.ai/details/publication/pub.1002735943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/307378a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/307378a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/307378a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/307378a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/307378a0'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      49 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/307378a0 schema:about N360e967c2c8a4bceab695665473b6023
2 N4ff0717763ce4c6692e3d41958cc4dbf
3 N5a349f86d88d40e4941031286428ef59
4 Nb447852295b943efbf3b5458306afc73
5 Nd1a30c02e26f47d081ab32f671c85ae8
6 Nda2440ba029e4acb924dfdbc48edb0ae
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author N61d006026df74f0681824db7e7683d63
10 schema:citation sg:pub.10.1007/bf00405493
11 sg:pub.10.1007/bf01868644
12 https://doi.org/10.1002/anie.198103251
13 https://doi.org/10.1016/0005-2736(76)90422-3
14 https://doi.org/10.1016/0005-2736(80)90247-3
15 https://doi.org/10.1016/0026-2862(73)90086-1
16 https://doi.org/10.1016/0092-8674(81)90497-9
17 https://doi.org/10.1016/0304-4157(82)90001-6
18 https://doi.org/10.1016/s0006-3495(64)86784-9
19 https://doi.org/10.1016/s0006-3495(79)85239-x
20 https://doi.org/10.1016/s0006-3495(80)85124-1
21 https://doi.org/10.1016/s0006-3495(82)84526-8
22 https://doi.org/10.1051/jphys:0197500360110103500
23 https://doi.org/10.1115/1.3138234
24 schema:datePublished 1984-01
25 schema:datePublishedReg 1984-01-01
26 schema:description The high deformability of erythrocytes which is essential for their transport through the capillaries depends critically on their discoid shape and on the elasticity of the plasma membrane, which may be determined by interactions of the cytoskeleton, the lipid/protein leaflet and the glycocalyx. Although techniques exist for measurement of the static elastic properties of erythrocytes, the cells are continuously deformed in vivo, the stress varying within periods of a few seconds. Thus dynamic elastic behaviour is essential for their physiological function. We present here a novel means of measuring the dynamic elastic constants of the red cell based on the transient deformation of individual cells in an inhomogeneous high-frequency (HF) electric field. By microscopy it is possible to record cellular elongations as small as 200 nm occurring within time scales of 1 ms. A main advantage is that the cellular response is linear and thus can be more readily interpreted theoretically. We have observed a creep function consisting of two exponentials with response times of 0.1 s and 1 s, which can be described in terms of a simple viscoelastic model. A remarkable temperature dependence of the membrane elasticity between 25 degrees C and 15 degrees C is observed for freshly drawn cells but not for trypsinized ones.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N2a419029bd3544a49b6df9cf7f5e22f3
31 N5e8a3e68814747c1903170dd78bbd4a2
32 sg:journal.1018957
33 schema:name Viscoelastic properties of erythrocyte membranes in high-frequency electric fields
34 schema:pagination 378
35 schema:productId N6f9706815e364e0296e6c6683ecfff49
36 N714a25f06b7b4ba1b6e9bc7c507fa81c
37 Nbb62300b85eb4834bec20c152f40fc5f
38 Ndd1189ea0ce94ff09e6d92a1191e77ce
39 Ne9973a85914a405596797ea1bffc92c1
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002735943
41 https://doi.org/10.1038/307378a0
42 schema:sdDatePublished 2019-04-11T00:03
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nfdb955c2772046bea7d43d2df97201cb
45 schema:url https://www.nature.com/articles/307378a0
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N2a419029bd3544a49b6df9cf7f5e22f3 schema:volumeNumber 307
50 rdf:type schema:PublicationVolume
51 N360e967c2c8a4bceab695665473b6023 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Erythrocyte Membrane
53 rdf:type schema:DefinedTerm
54 N367ab55ea8d14503b0eaa4a1a8275bf1 schema:familyName Engelhardt
55 schema:givenName H
56 rdf:type schema:Person
57 N4ff0717763ce4c6692e3d41958cc4dbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Elasticity
59 rdf:type schema:DefinedTerm
60 N528cb159fe0e4f22b2cb09c5b860196b rdf:first sg:person.01077324047.32
61 rdf:rest rdf:nil
62 N5a349f86d88d40e4941031286428ef59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Viscosity
64 rdf:type schema:DefinedTerm
65 N5e8a3e68814747c1903170dd78bbd4a2 schema:issueNumber 5949
66 rdf:type schema:PublicationIssue
67 N61d006026df74f0681824db7e7683d63 rdf:first N367ab55ea8d14503b0eaa4a1a8275bf1
68 rdf:rest Nf3b164030d524a02b4ae654c19273786
69 N6f9706815e364e0296e6c6683ecfff49 schema:name nlm_unique_id
70 schema:value 0410462
71 rdf:type schema:PropertyValue
72 N714a25f06b7b4ba1b6e9bc7c507fa81c schema:name readcube_id
73 schema:value 0d06f45b1a896566fceb7753d5b18f638348c575f59d4d02f5e02735ea07a87a
74 rdf:type schema:PropertyValue
75 Nb447852295b943efbf3b5458306afc73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Humans
77 rdf:type schema:DefinedTerm
78 Nbb62300b85eb4834bec20c152f40fc5f schema:name dimensions_id
79 schema:value pub.1002735943
80 rdf:type schema:PropertyValue
81 Nd1a30c02e26f47d081ab32f671c85ae8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Trypsin
83 rdf:type schema:DefinedTerm
84 Nda2440ba029e4acb924dfdbc48edb0ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Electricity
86 rdf:type schema:DefinedTerm
87 Ndd1189ea0ce94ff09e6d92a1191e77ce schema:name doi
88 schema:value 10.1038/307378a0
89 rdf:type schema:PropertyValue
90 Ne9973a85914a405596797ea1bffc92c1 schema:name pubmed_id
91 schema:value 6694733
92 rdf:type schema:PropertyValue
93 Nf3b164030d524a02b4ae654c19273786 rdf:first sg:person.01217747122.19
94 rdf:rest N528cb159fe0e4f22b2cb09c5b860196b
95 Nfdb955c2772046bea7d43d2df97201cb schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
98 schema:name Biological Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
101 schema:name Biochemistry and Cell Biology
102 rdf:type schema:DefinedTerm
103 sg:journal.1018957 schema:issn 0090-0028
104 1476-4687
105 schema:name Nature
106 rdf:type schema:Periodical
107 sg:person.01077324047.32 schema:familyName Sackmann
108 schema:givenName E
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077324047.32
110 rdf:type schema:Person
111 sg:person.01217747122.19 schema:familyName Gaub
112 schema:givenName H
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217747122.19
114 rdf:type schema:Person
115 sg:pub.10.1007/bf00405493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047077870
116 https://doi.org/10.1007/bf00405493
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf01868644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040437874
119 https://doi.org/10.1007/bf01868644
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/anie.198103251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015403232
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0005-2736(76)90422-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011433641
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0005-2736(80)90247-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040829420
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0026-2862(73)90086-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006220516
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0092-8674(81)90497-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035581490
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0304-4157(82)90001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006015877
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0006-3495(64)86784-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034320359
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0006-3495(79)85239-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028122528
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0006-3495(80)85124-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006902803
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0006-3495(82)84526-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027983003
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1051/jphys:0197500360110103500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056989369
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1115/1.3138234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062102444
144 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...