A large increase in enzyme–substrate affinity by protein engineering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-01

AUTHORS

Anthony J. Wilkinson, Alan R. Fersht, D. M. Blow, Paul Carter, Greg Winter

ABSTRACT

A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme-substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 leads to Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 leads to Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate. More... »

PAGES

187-188

Journal

TITLE

Nature

ISSUE

5947

VOLUME

307

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/307187a0

DOI

http://dx.doi.org/10.1038/307187a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012363000

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6690998


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acyl-tRNA Synthetases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geobacillus stearothermophilus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen Bonding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tyrosine-tRNA Ligase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Wilkinson", 
        "givenName": "Anthony J.", 
        "id": "sg:person.01135131247.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135131247.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Fersht", 
        "givenName": "Alan R.", 
        "id": "sg:person.0637777743.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637777743.00"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Blow", 
        "givenName": "D. M.", 
        "id": "sg:person.01103546737.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103546737.09"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Carter", 
        "givenName": "Paul", 
        "id": "sg:person.01235257625.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235257625.94"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Winter", 
        "givenName": "Greg", 
        "id": "sg:person.0655407005.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655407005.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-2836(78)90418-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002691601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90541-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005460782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/8.9.1965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005879095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1983.tb07374.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015231974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1981.tb06212.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023686581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1981.tb06212.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023686581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.6.3529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023721591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.12.5463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025360556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/10.20.6243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034551829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/264803a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042012588", 
          "https://doi.org/10.1038/264803a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/10.20.6487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042771139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.80.13.3963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047656637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/299756a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052478826", 
          "https://doi.org/10.1038/299756a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90255-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053226498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00284a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055168626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-114-1-75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060363354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081257391", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083309701", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-01", 
    "datePublishedReg": "1984-01-01", 
    "description": "A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme-substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 leads to Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 leads to Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/307187a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5947", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "307"
      }
    ], 
    "name": "A large increase in enzyme\u2013substrate affinity by protein engineering", 
    "pagination": "187-188", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ae6ca8390a1621da703e20a010cbe06fe4aa6c337a843244e9d77cacf708257"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6690998"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/307187a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012363000"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/307187a0", 
      "https://app.dimensions.ai/details/publication/pub.1012363000"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/307187a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/307187a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/307187a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/307187a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/307187a0'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      57 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/307187a0 schema:about N0fd8cc1cfbed4e3a91db2b85cfda1b5d
2 N28c3c61cea4a46a6b94e7ff02a44eb88
3 N29694caabf2645208cd130268496987b
4 N2d6ad1ed06db40de978637386e3abb69
5 N4c4bc8c0dbe146aa91f05a9f8737cbcc
6 N5bfb6bd5d8f146aea585a67b76efe36e
7 N800339b3446c43b188799dea33ca5500
8 N8ee9c9cf30484bbdbe63d0cab1771adc
9 Na99eec176b6343ec9026cd0ece88997e
10 Nd67e79781b594d7b9e67bdbe11cef1db
11 Ne4e52c4508f046e5a6b41552727640ec
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Nd0e17796e5264009bab930fcc667502f
15 schema:citation sg:pub.10.1038/264803a0
16 sg:pub.10.1038/299756a0
17 https://app.dimensions.ai/details/publication/pub.1081257391
18 https://app.dimensions.ai/details/publication/pub.1083309701
19 https://doi.org/10.1016/0022-2836(78)90418-7
20 https://doi.org/10.1016/0022-2836(81)90541-6
21 https://doi.org/10.1016/0022-2836(82)90255-8
22 https://doi.org/10.1021/bi00284a007
23 https://doi.org/10.1073/pnas.74.12.5463
24 https://doi.org/10.1073/pnas.77.6.3529
25 https://doi.org/10.1073/pnas.80.13.3963
26 https://doi.org/10.1093/nar/10.20.6243
27 https://doi.org/10.1093/nar/10.20.6487
28 https://doi.org/10.1093/nar/8.9.1965
29 https://doi.org/10.1099/00221287-114-1-75
30 https://doi.org/10.1111/j.1432-1033.1983.tb07374.x
31 https://doi.org/10.1111/j.1574-6968.1981.tb06212.x
32 schema:datePublished 1984-01
33 schema:datePublishedReg 1984-01-01
34 schema:description A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme-substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 leads to Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 leads to Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N2374474538d9437c924c304ad7aa483a
39 N5435f8f75626474b967af1094b8e9b60
40 sg:journal.1018957
41 schema:name A large increase in enzyme–substrate affinity by protein engineering
42 schema:pagination 187-188
43 schema:productId N275859d168de4d3a9a6004849ab0e157
44 N3aabb9cc5a164f1aab260fb8e54f2997
45 N886d96dc7a5c40b5bb7392e3c73e069e
46 Naa40abb2c6a44d1cb46ab774ca58c6fa
47 Nae1e007d5db042d7a82f94f9c391a74a
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012363000
49 https://doi.org/10.1038/307187a0
50 schema:sdDatePublished 2019-04-11T01:46
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N920789a32fcf47c38f3fc997686fdde3
53 schema:url http://www.nature.com/articles/307187a0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0fd8cc1cfbed4e3a91db2b85cfda1b5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Binding Sites
59 rdf:type schema:DefinedTerm
60 N2374474538d9437c924c304ad7aa483a schema:issueNumber 5947
61 rdf:type schema:PublicationIssue
62 N275859d168de4d3a9a6004849ab0e157 schema:name pubmed_id
63 schema:value 6690998
64 rdf:type schema:PropertyValue
65 N28c3c61cea4a46a6b94e7ff02a44eb88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Hydrogen Bonding
67 rdf:type schema:DefinedTerm
68 N29694caabf2645208cd130268496987b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Catalysis
70 rdf:type schema:DefinedTerm
71 N2c4fe51c1f734451a986cdfc2bbb9cf1 rdf:first sg:person.0655407005.55
72 rdf:rest rdf:nil
73 N2d6ad1ed06db40de978637386e3abb69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Protein Binding
75 rdf:type schema:DefinedTerm
76 N3aabb9cc5a164f1aab260fb8e54f2997 schema:name nlm_unique_id
77 schema:value 0410462
78 rdf:type schema:PropertyValue
79 N4c4bc8c0dbe146aa91f05a9f8737cbcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Mutation
81 rdf:type schema:DefinedTerm
82 N5435f8f75626474b967af1094b8e9b60 schema:volumeNumber 307
83 rdf:type schema:PublicationVolume
84 N5bfb6bd5d8f146aea585a67b76efe36e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Tyrosine-tRNA Ligase
86 rdf:type schema:DefinedTerm
87 N752d8cf2396b42d198dd61bf83ed6f62 rdf:first sg:person.01235257625.94
88 rdf:rest N2c4fe51c1f734451a986cdfc2bbb9cf1
89 N7f3ff676849a42e08293e8be7817465c rdf:first sg:person.0637777743.00
90 rdf:rest N9a434a1e745c43a884b3580b5de6da9c
91 N800339b3446c43b188799dea33ca5500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Kinetics
93 rdf:type schema:DefinedTerm
94 N886d96dc7a5c40b5bb7392e3c73e069e schema:name doi
95 schema:value 10.1038/307187a0
96 rdf:type schema:PropertyValue
97 N8ee9c9cf30484bbdbe63d0cab1771adc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Geobacillus stearothermophilus
99 rdf:type schema:DefinedTerm
100 N920789a32fcf47c38f3fc997686fdde3 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N9a434a1e745c43a884b3580b5de6da9c rdf:first sg:person.01103546737.09
103 rdf:rest N752d8cf2396b42d198dd61bf83ed6f62
104 Na99eec176b6343ec9026cd0ece88997e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Amino Acyl-tRNA Synthetases
106 rdf:type schema:DefinedTerm
107 Naa40abb2c6a44d1cb46ab774ca58c6fa schema:name dimensions_id
108 schema:value pub.1012363000
109 rdf:type schema:PropertyValue
110 Nae1e007d5db042d7a82f94f9c391a74a schema:name readcube_id
111 schema:value 3ae6ca8390a1621da703e20a010cbe06fe4aa6c337a843244e9d77cacf708257
112 rdf:type schema:PropertyValue
113 Nd0e17796e5264009bab930fcc667502f rdf:first sg:person.01135131247.31
114 rdf:rest N7f3ff676849a42e08293e8be7817465c
115 Nd67e79781b594d7b9e67bdbe11cef1db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Structure-Activity Relationship
117 rdf:type schema:DefinedTerm
118 Ne4e52c4508f046e5a6b41552727640ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genes
120 rdf:type schema:DefinedTerm
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biochemistry and Cell Biology
126 rdf:type schema:DefinedTerm
127 sg:journal.1018957 schema:issn 0090-0028
128 1476-4687
129 schema:name Nature
130 rdf:type schema:Periodical
131 sg:person.01103546737.09 schema:familyName Blow
132 schema:givenName D. M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103546737.09
134 rdf:type schema:Person
135 sg:person.01135131247.31 schema:familyName Wilkinson
136 schema:givenName Anthony J.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135131247.31
138 rdf:type schema:Person
139 sg:person.01235257625.94 schema:familyName Carter
140 schema:givenName Paul
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235257625.94
142 rdf:type schema:Person
143 sg:person.0637777743.00 schema:familyName Fersht
144 schema:givenName Alan R.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637777743.00
146 rdf:type schema:Person
147 sg:person.0655407005.55 schema:familyName Winter
148 schema:givenName Greg
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655407005.55
150 rdf:type schema:Person
151 sg:pub.10.1038/264803a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042012588
152 https://doi.org/10.1038/264803a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/299756a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052478826
155 https://doi.org/10.1038/299756a0
156 rdf:type schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1081257391 schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1083309701 schema:CreativeWork
159 https://doi.org/10.1016/0022-2836(78)90418-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002691601
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0022-2836(81)90541-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005460782
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0022-2836(82)90255-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053226498
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/bi00284a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055168626
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1073/pnas.77.6.3529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023721591
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.80.13.3963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047656637
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/nar/10.20.6243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034551829
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/nar/10.20.6487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042771139
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/8.9.1965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005879095
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1099/00221287-114-1-75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060363354
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/j.1432-1033.1983.tb07374.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015231974
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/j.1574-6968.1981.tb06212.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023686581
184 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...