A large increase in enzyme–substrate affinity by protein engineering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-01

AUTHORS

Anthony J. Wilkinson, Alan R. Fersht, D. M. Blow, Paul Carter, Greg Winter

ABSTRACT

A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme-substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 leads to Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 leads to Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate. More... »

PAGES

187-188

Journal

TITLE

Nature

ISSUE

5947

VOLUME

307

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/307187a0

DOI

http://dx.doi.org/10.1038/307187a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012363000

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6690998


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acyl-tRNA Synthetases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geobacillus stearothermophilus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen Bonding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tyrosine-tRNA Ligase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Wilkinson", 
        "givenName": "Anthony J.", 
        "id": "sg:person.01135131247.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135131247.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Fersht", 
        "givenName": "Alan R.", 
        "id": "sg:person.0637777743.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637777743.00"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Blow", 
        "givenName": "D. M.", 
        "id": "sg:person.01103546737.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103546737.09"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Carter", 
        "givenName": "Paul", 
        "id": "sg:person.01235257625.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235257625.94"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Winter", 
        "givenName": "Greg", 
        "id": "sg:person.0655407005.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655407005.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-2836(78)90418-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002691601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90541-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005460782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/8.9.1965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005879095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1983.tb07374.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015231974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1981.tb06212.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023686581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1981.tb06212.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023686581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.6.3529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023721591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.12.5463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025360556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/10.20.6243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034551829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/264803a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042012588", 
          "https://doi.org/10.1038/264803a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/10.20.6487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042771139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.80.13.3963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047656637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/299756a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052478826", 
          "https://doi.org/10.1038/299756a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90255-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053226498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00284a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055168626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-114-1-75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060363354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081257391", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083309701", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-01", 
    "datePublishedReg": "1984-01-01", 
    "description": "A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme-substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 leads to Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 leads to Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/307187a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5947", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "307"
      }
    ], 
    "name": "A large increase in enzyme\u2013substrate affinity by protein engineering", 
    "pagination": "187-188", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ae6ca8390a1621da703e20a010cbe06fe4aa6c337a843244e9d77cacf708257"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6690998"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/307187a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012363000"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/307187a0", 
      "https://app.dimensions.ai/details/publication/pub.1012363000"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/307187a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/307187a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/307187a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/307187a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/307187a0'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      57 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/307187a0 schema:about N2eed137566834861bc13863588383d66
2 N4ce8c2ee190a4ecf9dc8b9e93c717b07
3 N4ee9bcac9bbd4a8a8b546681e7678a41
4 N5167bd2804b64555b482e6a318e5d911
5 N670ca895957f4c5e94b71d99d9d02257
6 N6a38e3b2062843578bec50cbe2343f7e
7 N6cd0db8025374d68850af72b86ec2a91
8 N74e1c892a5e44abe82a6585936349db8
9 N8dc360407dd34f5790d9ee196aaaab4a
10 Na6bfcfc24fe546eeb1e2d5d2e856cc3f
11 Nc266fe224cda437d83a9495952b9b9ac
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Ne8b1f426219e48789ae237dac906f149
15 schema:citation sg:pub.10.1038/264803a0
16 sg:pub.10.1038/299756a0
17 https://app.dimensions.ai/details/publication/pub.1081257391
18 https://app.dimensions.ai/details/publication/pub.1083309701
19 https://doi.org/10.1016/0022-2836(78)90418-7
20 https://doi.org/10.1016/0022-2836(81)90541-6
21 https://doi.org/10.1016/0022-2836(82)90255-8
22 https://doi.org/10.1021/bi00284a007
23 https://doi.org/10.1073/pnas.74.12.5463
24 https://doi.org/10.1073/pnas.77.6.3529
25 https://doi.org/10.1073/pnas.80.13.3963
26 https://doi.org/10.1093/nar/10.20.6243
27 https://doi.org/10.1093/nar/10.20.6487
28 https://doi.org/10.1093/nar/8.9.1965
29 https://doi.org/10.1099/00221287-114-1-75
30 https://doi.org/10.1111/j.1432-1033.1983.tb07374.x
31 https://doi.org/10.1111/j.1574-6968.1981.tb06212.x
32 schema:datePublished 1984-01
33 schema:datePublishedReg 1984-01-01
34 schema:description A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme-substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 leads to Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 leads to Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N7e5d40afe7c54bee841b8bd5b7ee1ea4
39 Nc28b820d9b8c408cb3b8ab9ba4c32c2e
40 sg:journal.1018957
41 schema:name A large increase in enzyme–substrate affinity by protein engineering
42 schema:pagination 187-188
43 schema:productId N5387ea5c9abd466e9699a2258bdfa9fd
44 N6a563aca5fc74e9baae2a5fd2877f632
45 Nb2757b396f4f44caaefb435129bfb04a
46 Nc7318194fb7142eab5230f6ab299a913
47 Nd98f1bb167bd4ceda4cd2b40f670e93c
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012363000
49 https://doi.org/10.1038/307187a0
50 schema:sdDatePublished 2019-04-11T01:46
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N3e31b70649c246e4829d967831d261a3
53 schema:url http://www.nature.com/articles/307187a0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N006d8d999cf04807a547905cd19f8be5 rdf:first sg:person.0655407005.55
58 rdf:rest rdf:nil
59 N0e9ba7cdf2aa40ee9aee7d78c2b5cd1c rdf:first sg:person.0637777743.00
60 rdf:rest N1e2375e7aecb4e41ae45b6669b53b13e
61 N1e2375e7aecb4e41ae45b6669b53b13e rdf:first sg:person.01103546737.09
62 rdf:rest N6b7a7a2a450547bcbdb7d250e220676c
63 N2eed137566834861bc13863588383d66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Geobacillus stearothermophilus
65 rdf:type schema:DefinedTerm
66 N3e31b70649c246e4829d967831d261a3 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N4ce8c2ee190a4ecf9dc8b9e93c717b07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Structure-Activity Relationship
70 rdf:type schema:DefinedTerm
71 N4ee9bcac9bbd4a8a8b546681e7678a41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Kinetics
73 rdf:type schema:DefinedTerm
74 N5167bd2804b64555b482e6a318e5d911 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Hydrogen Bonding
76 rdf:type schema:DefinedTerm
77 N5387ea5c9abd466e9699a2258bdfa9fd schema:name nlm_unique_id
78 schema:value 0410462
79 rdf:type schema:PropertyValue
80 N670ca895957f4c5e94b71d99d9d02257 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Catalysis
82 rdf:type schema:DefinedTerm
83 N6a38e3b2062843578bec50cbe2343f7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Genes
85 rdf:type schema:DefinedTerm
86 N6a563aca5fc74e9baae2a5fd2877f632 schema:name dimensions_id
87 schema:value pub.1012363000
88 rdf:type schema:PropertyValue
89 N6b7a7a2a450547bcbdb7d250e220676c rdf:first sg:person.01235257625.94
90 rdf:rest N006d8d999cf04807a547905cd19f8be5
91 N6cd0db8025374d68850af72b86ec2a91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Protein Binding
93 rdf:type schema:DefinedTerm
94 N74e1c892a5e44abe82a6585936349db8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Amino Acyl-tRNA Synthetases
96 rdf:type schema:DefinedTerm
97 N7e5d40afe7c54bee841b8bd5b7ee1ea4 schema:volumeNumber 307
98 rdf:type schema:PublicationVolume
99 N8dc360407dd34f5790d9ee196aaaab4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Tyrosine-tRNA Ligase
101 rdf:type schema:DefinedTerm
102 Na6bfcfc24fe546eeb1e2d5d2e856cc3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Binding Sites
104 rdf:type schema:DefinedTerm
105 Nb2757b396f4f44caaefb435129bfb04a schema:name doi
106 schema:value 10.1038/307187a0
107 rdf:type schema:PropertyValue
108 Nc266fe224cda437d83a9495952b9b9ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Mutation
110 rdf:type schema:DefinedTerm
111 Nc28b820d9b8c408cb3b8ab9ba4c32c2e schema:issueNumber 5947
112 rdf:type schema:PublicationIssue
113 Nc7318194fb7142eab5230f6ab299a913 schema:name pubmed_id
114 schema:value 6690998
115 rdf:type schema:PropertyValue
116 Nd98f1bb167bd4ceda4cd2b40f670e93c schema:name readcube_id
117 schema:value 3ae6ca8390a1621da703e20a010cbe06fe4aa6c337a843244e9d77cacf708257
118 rdf:type schema:PropertyValue
119 Ne8b1f426219e48789ae237dac906f149 rdf:first sg:person.01135131247.31
120 rdf:rest N0e9ba7cdf2aa40ee9aee7d78c2b5cd1c
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biochemistry and Cell Biology
126 rdf:type schema:DefinedTerm
127 sg:journal.1018957 schema:issn 0090-0028
128 1476-4687
129 schema:name Nature
130 rdf:type schema:Periodical
131 sg:person.01103546737.09 schema:familyName Blow
132 schema:givenName D. M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103546737.09
134 rdf:type schema:Person
135 sg:person.01135131247.31 schema:familyName Wilkinson
136 schema:givenName Anthony J.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135131247.31
138 rdf:type schema:Person
139 sg:person.01235257625.94 schema:familyName Carter
140 schema:givenName Paul
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235257625.94
142 rdf:type schema:Person
143 sg:person.0637777743.00 schema:familyName Fersht
144 schema:givenName Alan R.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637777743.00
146 rdf:type schema:Person
147 sg:person.0655407005.55 schema:familyName Winter
148 schema:givenName Greg
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655407005.55
150 rdf:type schema:Person
151 sg:pub.10.1038/264803a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042012588
152 https://doi.org/10.1038/264803a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/299756a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052478826
155 https://doi.org/10.1038/299756a0
156 rdf:type schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1081257391 schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1083309701 schema:CreativeWork
159 https://doi.org/10.1016/0022-2836(78)90418-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002691601
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0022-2836(81)90541-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005460782
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0022-2836(82)90255-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053226498
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/bi00284a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055168626
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1073/pnas.77.6.3529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023721591
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.80.13.3963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047656637
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/nar/10.20.6243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034551829
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/nar/10.20.6487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042771139
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/8.9.1965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005879095
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1099/00221287-114-1-75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060363354
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/j.1432-1033.1983.tb07374.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015231974
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/j.1574-6968.1981.tb06212.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023686581
184 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...