A large increase in enzyme–substrate affinity by protein engineering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-01

AUTHORS

Anthony J. Wilkinson, Alan R. Fersht, D. M. Blow, Paul Carter, Greg Winter

ABSTRACT

A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme-substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 leads to Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 leads to Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate. More... »

PAGES

187-188

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

5947

VOLUME

307

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/307187a0

DOI

http://dx.doi.org/10.1038/307187a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012363000

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6690998


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acyl-tRNA Synthetases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geobacillus stearothermophilus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen Bonding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tyrosine-tRNA Ligase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Wilkinson", 
        "givenName": "Anthony J.", 
        "id": "sg:person.01135131247.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135131247.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Fersht", 
        "givenName": "Alan R.", 
        "id": "sg:person.0637777743.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637777743.00"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Blow", 
        "givenName": "D. M.", 
        "id": "sg:person.01103546737.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103546737.09"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Carter", 
        "givenName": "Paul", 
        "id": "sg:person.01235257625.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235257625.94"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Winter", 
        "givenName": "Greg", 
        "id": "sg:person.0655407005.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655407005.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-2836(78)90418-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002691601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90541-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005460782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/8.9.1965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005879095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1983.tb07374.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015231974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1981.tb06212.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023686581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1981.tb06212.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023686581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.6.3529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023721591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.12.5463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025360556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/10.20.6243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034551829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/264803a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042012588", 
          "https://doi.org/10.1038/264803a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/10.20.6487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042771139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.80.13.3963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047656637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/299756a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052478826", 
          "https://doi.org/10.1038/299756a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90255-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053226498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00284a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055168626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-114-1-75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060363354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081257391", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083309701", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-01", 
    "datePublishedReg": "1984-01-01", 
    "description": "A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme-substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 leads to Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 leads to Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/307187a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5947", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "307"
      }
    ], 
    "name": "A large increase in enzyme\u2013substrate affinity by protein engineering", 
    "pagination": "187-188", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ae6ca8390a1621da703e20a010cbe06fe4aa6c337a843244e9d77cacf708257"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6690998"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/307187a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012363000"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/307187a0", 
      "https://app.dimensions.ai/details/publication/pub.1012363000"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/307187a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/307187a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/307187a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/307187a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/307187a0'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      57 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/307187a0 schema:about N0b93317c713243e098163af751460631
2 N21e9c86f7ce942ce96f0d308ddc19424
3 N320fb6ee2bee4f30924ef8a2bf03cffc
4 N38fb9415bdc1401aba11356db4b05cf3
5 N56ea1cb579f34fee857d8a19ca56983a
6 N8f7e03b6d4234ab088837910a8fa1f50
7 Na00cb88c991c48c482b7519d2186674c
8 Na3e19eb9bddc4146bfe629535da9df80
9 Nc3748f94b90c490595fa2a7787c94061
10 Ncb95b5e8018b4f609990b3cb542ed611
11 Ncf50edbaeef543dcab21e5461f8b115f
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Nb1679ef8fd234dc88b8dd5dee2e795b0
15 schema:citation sg:pub.10.1038/264803a0
16 sg:pub.10.1038/299756a0
17 https://app.dimensions.ai/details/publication/pub.1081257391
18 https://app.dimensions.ai/details/publication/pub.1083309701
19 https://doi.org/10.1016/0022-2836(78)90418-7
20 https://doi.org/10.1016/0022-2836(81)90541-6
21 https://doi.org/10.1016/0022-2836(82)90255-8
22 https://doi.org/10.1021/bi00284a007
23 https://doi.org/10.1073/pnas.74.12.5463
24 https://doi.org/10.1073/pnas.77.6.3529
25 https://doi.org/10.1073/pnas.80.13.3963
26 https://doi.org/10.1093/nar/10.20.6243
27 https://doi.org/10.1093/nar/10.20.6487
28 https://doi.org/10.1093/nar/8.9.1965
29 https://doi.org/10.1099/00221287-114-1-75
30 https://doi.org/10.1111/j.1432-1033.1983.tb07374.x
31 https://doi.org/10.1111/j.1574-6968.1981.tb06212.x
32 schema:datePublished 1984-01
33 schema:datePublishedReg 1984-01-01
34 schema:description A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme-substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 leads to Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 leads to Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N2b9e20cfb5df4c8b85d034778af674c5
39 N604b3e1cac7f444eb086a6f48095d7b7
40 sg:journal.1018957
41 schema:name A large increase in enzyme–substrate affinity by protein engineering
42 schema:pagination 187-188
43 schema:productId N2a287f1011fe4337a50eb68bdc56ea2a
44 N428a14adca3d4f799e0682e21b335655
45 N5c5f3a68136f4a41898ab932deffb62b
46 N6b365840358c40c4ada12c9f833450dc
47 Nd7eb7f811ec44f47b3cb3316469cb6e5
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012363000
49 https://doi.org/10.1038/307187a0
50 schema:sdDatePublished 2019-04-11T01:46
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N759df4c46db149659336740803acf385
53 schema:url http://www.nature.com/articles/307187a0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0b93317c713243e098163af751460631 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Tyrosine-tRNA Ligase
59 rdf:type schema:DefinedTerm
60 N21e9c86f7ce942ce96f0d308ddc19424 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Kinetics
62 rdf:type schema:DefinedTerm
63 N2a287f1011fe4337a50eb68bdc56ea2a schema:name readcube_id
64 schema:value 3ae6ca8390a1621da703e20a010cbe06fe4aa6c337a843244e9d77cacf708257
65 rdf:type schema:PropertyValue
66 N2b9e20cfb5df4c8b85d034778af674c5 schema:issueNumber 5947
67 rdf:type schema:PublicationIssue
68 N320fb6ee2bee4f30924ef8a2bf03cffc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Protein Binding
70 rdf:type schema:DefinedTerm
71 N326ee165ee0f47528a500a886474698a rdf:first sg:person.0637777743.00
72 rdf:rest N43b9587e34f549059bd8d84d16b377ba
73 N38fb9415bdc1401aba11356db4b05cf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Geobacillus stearothermophilus
75 rdf:type schema:DefinedTerm
76 N428a14adca3d4f799e0682e21b335655 schema:name dimensions_id
77 schema:value pub.1012363000
78 rdf:type schema:PropertyValue
79 N43b9587e34f549059bd8d84d16b377ba rdf:first sg:person.01103546737.09
80 rdf:rest Nba74b85ac5024fbd802db9db0ace7835
81 N56ea1cb579f34fee857d8a19ca56983a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Catalysis
83 rdf:type schema:DefinedTerm
84 N5c5f3a68136f4a41898ab932deffb62b schema:name doi
85 schema:value 10.1038/307187a0
86 rdf:type schema:PropertyValue
87 N604b3e1cac7f444eb086a6f48095d7b7 schema:volumeNumber 307
88 rdf:type schema:PublicationVolume
89 N6b365840358c40c4ada12c9f833450dc schema:name pubmed_id
90 schema:value 6690998
91 rdf:type schema:PropertyValue
92 N759df4c46db149659336740803acf385 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N8f7e03b6d4234ab088837910a8fa1f50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Hydrogen Bonding
96 rdf:type schema:DefinedTerm
97 Na00cb88c991c48c482b7519d2186674c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Mutation
99 rdf:type schema:DefinedTerm
100 Na3e19eb9bddc4146bfe629535da9df80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Binding Sites
102 rdf:type schema:DefinedTerm
103 Nb1679ef8fd234dc88b8dd5dee2e795b0 rdf:first sg:person.01135131247.31
104 rdf:rest N326ee165ee0f47528a500a886474698a
105 Nb47ad7adb42a4a70bd95e1bc8e04d564 rdf:first sg:person.0655407005.55
106 rdf:rest rdf:nil
107 Nba74b85ac5024fbd802db9db0ace7835 rdf:first sg:person.01235257625.94
108 rdf:rest Nb47ad7adb42a4a70bd95e1bc8e04d564
109 Nc3748f94b90c490595fa2a7787c94061 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Amino Acyl-tRNA Synthetases
111 rdf:type schema:DefinedTerm
112 Ncb95b5e8018b4f609990b3cb542ed611 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Structure-Activity Relationship
114 rdf:type schema:DefinedTerm
115 Ncf50edbaeef543dcab21e5461f8b115f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Genes
117 rdf:type schema:DefinedTerm
118 Nd7eb7f811ec44f47b3cb3316469cb6e5 schema:name nlm_unique_id
119 schema:value 0410462
120 rdf:type schema:PropertyValue
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biochemistry and Cell Biology
126 rdf:type schema:DefinedTerm
127 sg:journal.1018957 schema:issn 0090-0028
128 1476-4687
129 schema:name Nature
130 rdf:type schema:Periodical
131 sg:person.01103546737.09 schema:familyName Blow
132 schema:givenName D. M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103546737.09
134 rdf:type schema:Person
135 sg:person.01135131247.31 schema:familyName Wilkinson
136 schema:givenName Anthony J.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135131247.31
138 rdf:type schema:Person
139 sg:person.01235257625.94 schema:familyName Carter
140 schema:givenName Paul
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235257625.94
142 rdf:type schema:Person
143 sg:person.0637777743.00 schema:familyName Fersht
144 schema:givenName Alan R.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637777743.00
146 rdf:type schema:Person
147 sg:person.0655407005.55 schema:familyName Winter
148 schema:givenName Greg
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655407005.55
150 rdf:type schema:Person
151 sg:pub.10.1038/264803a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042012588
152 https://doi.org/10.1038/264803a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/299756a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052478826
155 https://doi.org/10.1038/299756a0
156 rdf:type schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1081257391 schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1083309701 schema:CreativeWork
159 https://doi.org/10.1016/0022-2836(78)90418-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002691601
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0022-2836(81)90541-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005460782
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0022-2836(82)90255-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053226498
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/bi00284a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055168626
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1073/pnas.77.6.3529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023721591
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.80.13.3963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047656637
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/nar/10.20.6243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034551829
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/nar/10.20.6487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042771139
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/8.9.1965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005879095
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1099/00221287-114-1-75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060363354
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/j.1432-1033.1983.tb07374.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015231974
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/j.1574-6968.1981.tb06212.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023686581
184 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...