252Cf plasma desorption in ion implanted mica View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-05

AUTHORS

M. Maurette, A. Banifatémi, S. Della-Negra, Y. Le Beyec

ABSTRACT

252Cf plasma-desorption mass spectrometry was first used1 to determine the masses of heavy molecules of biological interest2,3. In this technique 252Cf fission fragments penetrate a thin deposit of material (105 cm−2) inducing the desorption of neutral and ionized species. The ionized species are accelerated by an external electrical field and their mass analysed using a time-of-flight (TOF) mass spectrometer run in the coincidence mode with each fission fragment. We have tried to assess the analytical and/or simulation potential of heavy-ion stimulated desorption of ions (HISD) in other fields ranging from the so-called ‘gas–grain’ interactions in astrophysics to the complex ageing of surfaces exposed to strongly ionizing environments in fast neutron fission reactors and fusion reactors. We outline here the potential of HISD for investigating ion implantation effects in insulators, and report a very strong enhancement in the HISD of ionized species from ion implanted mica. This enhancement, which generates heavy-ion clusters up to mass ∼500 AMU, grows around a critical fluence of implanted ions, and originates from two distinct types of radiation damage defects. More... »

PAGES

159-161

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/303159a0

DOI

http://dx.doi.org/10.1038/303159a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007295446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire Ren\u00e9 Bernas, 91406, Orsay, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire Ren\u00e9 Bernas, 91406, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maurette", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique Nucl\u00e9aire, 91406, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.457018.f", 
          "name": [
            "Institut de Physique Nucl\u00e9aire, 91406, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banifat\u00e9mi", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique Nucl\u00e9aire, 91406, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.457018.f", 
          "name": [
            "Institut de Physique Nucl\u00e9aire, 91406, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Della-Negra", 
        "givenName": "S.", 
        "id": "sg:person.01302247426.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302247426.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique Nucl\u00e9aire, 91406, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.457018.f", 
          "name": [
            "Institut de Physique Nucl\u00e9aire, 91406, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beyec", 
        "givenName": "Y. Le", 
        "id": "sg:person.012071310623.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071310623.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1983-05", 
    "datePublishedReg": "1983-05-01", 
    "description": "Abstract252Cf plasma-desorption mass spectrometry was first used1 to determine the masses of heavy molecules of biological interest2,3. In this technique 252Cf fission fragments penetrate a thin deposit of material (105 cm\u22122) inducing the desorption of neutral and ionized species. The ionized species are accelerated by an external electrical field and their mass analysed using a time-of-flight (TOF) mass spectrometer run in the coincidence mode with each fission fragment. We have tried to assess the analytical and/or simulation potential of heavy-ion stimulated desorption of ions (HISD) in other fields ranging from the so-called \u2018gas\u2013grain\u2019 interactions in astrophysics to the complex ageing of surfaces exposed to strongly ionizing environments in fast neutron fission reactors and fusion reactors. We outline here the potential of HISD for investigating ion implantation effects in insulators, and report a very strong enhancement in the HISD of ionized species from ion implanted mica. This enhancement, which generates heavy-ion clusters up to mass \u223c500 AMU, grows around a critical fluence of implanted ions, and originates from two distinct types of radiation damage defects.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/303159a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5913", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "303"
      }
    ], 
    "keywords": [
      "fission fragments", 
      "ion implantation effects", 
      "radiation damage defects", 
      "desorption of ions", 
      "flight mass spectrometer", 
      "implanted ions", 
      "external electrical field", 
      "critical fluence", 
      "coincidence mode", 
      "implantation effects", 
      "fusion reactors", 
      "fission reactors", 
      "strong enhancement", 
      "plasma desorption mass spectrometry", 
      "plasma desorption", 
      "heavy molecules", 
      "mass spectrometer", 
      "electrical field", 
      "damage defects", 
      "ions", 
      "astrophysics", 
      "fluence", 
      "amu", 
      "insulator", 
      "field", 
      "spectrometer", 
      "mass", 
      "simulation potential", 
      "desorption", 
      "thin deposits", 
      "enhancement", 
      "mica", 
      "originates", 
      "mode", 
      "surface", 
      "reactor", 
      "clusters", 
      "mass spectrometry", 
      "potential", 
      "molecules", 
      "interaction", 
      "defects", 
      "used1", 
      "materials", 
      "spectrometry", 
      "distinct types", 
      "fragments", 
      "effect", 
      "time", 
      "species", 
      "environment", 
      "types", 
      "deposits", 
      "aging", 
      "hisD", 
      "complex aging"
    ], 
    "name": "252Cf plasma desorption in ion implanted mica", 
    "pagination": "159-161", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007295446"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/303159a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/303159a0", 
      "https://app.dimensions.ai/details/publication/pub.1007295446"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_152.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/303159a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/303159a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/303159a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/303159a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/303159a0'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      20 PREDICATES      82 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/303159a0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author N018174181f9449c6a1b756e94f5f4b8e
5 schema:datePublished 1983-05
6 schema:datePublishedReg 1983-05-01
7 schema:description Abstract252Cf plasma-desorption mass spectrometry was first used1 to determine the masses of heavy molecules of biological interest2,3. In this technique 252Cf fission fragments penetrate a thin deposit of material (105 cm−2) inducing the desorption of neutral and ionized species. The ionized species are accelerated by an external electrical field and their mass analysed using a time-of-flight (TOF) mass spectrometer run in the coincidence mode with each fission fragment. We have tried to assess the analytical and/or simulation potential of heavy-ion stimulated desorption of ions (HISD) in other fields ranging from the so-called ‘gas–grain’ interactions in astrophysics to the complex ageing of surfaces exposed to strongly ionizing environments in fast neutron fission reactors and fusion reactors. We outline here the potential of HISD for investigating ion implantation effects in insulators, and report a very strong enhancement in the HISD of ionized species from ion implanted mica. This enhancement, which generates heavy-ion clusters up to mass ∼500 AMU, grows around a critical fluence of implanted ions, and originates from two distinct types of radiation damage defects.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N0d9ffc7eacb74bc59d6328ee4ffc5578
11 Nde8eb786f1f44d5fb6cd347e9903375b
12 sg:journal.1018957
13 schema:keywords aging
14 amu
15 astrophysics
16 clusters
17 coincidence mode
18 complex aging
19 critical fluence
20 damage defects
21 defects
22 deposits
23 desorption
24 desorption of ions
25 distinct types
26 effect
27 electrical field
28 enhancement
29 environment
30 external electrical field
31 field
32 fission fragments
33 fission reactors
34 flight mass spectrometer
35 fluence
36 fragments
37 fusion reactors
38 heavy molecules
39 hisD
40 implantation effects
41 implanted ions
42 insulator
43 interaction
44 ion implantation effects
45 ions
46 mass
47 mass spectrometer
48 mass spectrometry
49 materials
50 mica
51 mode
52 molecules
53 originates
54 plasma desorption
55 plasma desorption mass spectrometry
56 potential
57 radiation damage defects
58 reactor
59 simulation potential
60 species
61 spectrometer
62 spectrometry
63 strong enhancement
64 surface
65 thin deposits
66 time
67 types
68 used1
69 schema:name 252Cf plasma desorption in ion implanted mica
70 schema:pagination 159-161
71 schema:productId N5dd4d53b2cad419aa565d42d9bc354b4
72 Ne0abf60993aa44388cb3ee19afa6f949
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007295446
74 https://doi.org/10.1038/303159a0
75 schema:sdDatePublished 2022-12-01T06:18
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N82240c2c60c34e1ab9015c82e9dc22a9
78 schema:url https://doi.org/10.1038/303159a0
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N018174181f9449c6a1b756e94f5f4b8e rdf:first Nd9bc0ba1086d40b59f4abc19a27e92be
83 rdf:rest N314ef73d58194b389e19c243ce11e779
84 N0d9ffc7eacb74bc59d6328ee4ffc5578 schema:issueNumber 5913
85 rdf:type schema:PublicationIssue
86 N314ef73d58194b389e19c243ce11e779 rdf:first N8fed205a06904220882daf97225f93dd
87 rdf:rest N6fe5293824ae4d78adadc004509b3d9b
88 N5dd4d53b2cad419aa565d42d9bc354b4 schema:name dimensions_id
89 schema:value pub.1007295446
90 rdf:type schema:PropertyValue
91 N6fe5293824ae4d78adadc004509b3d9b rdf:first sg:person.01302247426.58
92 rdf:rest N8f6034e7d410485287097a50d7603393
93 N82240c2c60c34e1ab9015c82e9dc22a9 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N8f6034e7d410485287097a50d7603393 rdf:first sg:person.012071310623.84
96 rdf:rest rdf:nil
97 N8fed205a06904220882daf97225f93dd schema:affiliation grid-institutes:grid.457018.f
98 schema:familyName Banifatémi
99 schema:givenName A.
100 rdf:type schema:Person
101 Nd9bc0ba1086d40b59f4abc19a27e92be schema:affiliation grid-institutes:None
102 schema:familyName Maurette
103 schema:givenName M.
104 rdf:type schema:Person
105 Nde8eb786f1f44d5fb6cd347e9903375b schema:volumeNumber 303
106 rdf:type schema:PublicationVolume
107 Ne0abf60993aa44388cb3ee19afa6f949 schema:name doi
108 schema:value 10.1038/303159a0
109 rdf:type schema:PropertyValue
110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
114 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
117 schema:name Other Physical Sciences
118 rdf:type schema:DefinedTerm
119 sg:journal.1018957 schema:issn 0028-0836
120 1476-4687
121 schema:name Nature
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.012071310623.84 schema:affiliation grid-institutes:grid.457018.f
125 schema:familyName Beyec
126 schema:givenName Y. Le
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071310623.84
128 rdf:type schema:Person
129 sg:person.01302247426.58 schema:affiliation grid-institutes:grid.457018.f
130 schema:familyName Della-Negra
131 schema:givenName S.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302247426.58
133 rdf:type schema:Person
134 grid-institutes:None schema:alternateName Laboratoire René Bernas, 91406, Orsay, France
135 schema:name Laboratoire René Bernas, 91406, Orsay, France
136 rdf:type schema:Organization
137 grid-institutes:grid.457018.f schema:alternateName Institut de Physique Nucléaire, 91406, Orsay, France
138 schema:name Institut de Physique Nucléaire, 91406, Orsay, France
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...