The molecular elasticity of the extracellular matrix protein tenascin View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-05

AUTHORS

Andres F. Oberhauser, Piotr E. Marszalek, Harold P. Erickson, Julio M. Fernandez

ABSTRACT

Extracellular matrix proteins are thought to provide a rigid mechanical anchor that supports and guides migrating and rolling cells. Here we examine the mechanical properties of the extracellular matrix protein tenascin by using atomic-force-microscopy techniques. Our results indicate that tenascin is an elastic protein. Single molecules of tenascin could be stretched to several times their resting length. Force-extension curves showed a saw-tooth pattern, with peaks of force at 137pN. These peaks were approximately 25 nm apart. Similar results have been obtained by study of titin. We also found similar results by studying recombinant tenascin fragments encompassing the 15 fibronectin type III domains of tenascin. This indicates that the extensibility of tenascin may be due to the stretch-induced unfolding of its fibronectin type III domains. Refolding of tenascin after stretching, observed when the force was reduced to near zero, showed a double-exponential recovery with time constants of 42 domains refolded per second and 0.5 domains per second. The former speed of refolding is more than twice as fast as any previously reported speed of refolding of a fibronectin type III domain. We suggest that the extensibility of the modular fibronectin type III region may be important in allowing tenascin-ligand bonds to persist over long extensions. These properties of fibronectin type III modules may be of widespread use in extracellular proteins containing such domain. More... »

PAGES

181-185

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/30270

DOI

http://dx.doi.org/10.1038/30270

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036099572

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9603523


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alternative Splicing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibronectins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Atomic Force", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Fragments", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Folding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tenascin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Physiology and Biophysics, Mayo Foundation, Rochester, Minnesota 55905, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberhauser", 
        "givenName": "Andres F.", 
        "id": "sg:person.01266230142.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266230142.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Physiology and Biophysics, Mayo Foundation, Rochester, Minnesota 55905, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marszalek", 
        "givenName": "Piotr E.", 
        "id": "sg:person.01031042222.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031042222.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.189509.c", 
          "name": [
            "*Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erickson", 
        "givenName": "Harold P.", 
        "id": "sg:person.01354743721.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354743721.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Physiology and Biophysics, Mayo Foundation, Rochester, Minnesota 55905, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fernandez", 
        "givenName": "Julio M.", 
        "id": "sg:person.0674752752.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674752752.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0006-3495(92)81577-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003442575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.20.10703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006297008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006519571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-5663(95)99227-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008390742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/387308a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012750390", 
          "https://doi.org/10.1038/387308a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81280-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014825070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/385537a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016390960", 
          "https://doi.org/10.1038/385537a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/385537a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016390960", 
          "https://doi.org/10.1038/385537a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.19.8990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022112761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.138.5.1169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022266247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/374539a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023907545", 
          "https://doi.org/10.1038/374539a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01921736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026442458", 
          "https://doi.org/10.1007/bf01921736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01921736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026442458", 
          "https://doi.org/10.1007/bf01921736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0955-0674(93)90037-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029332681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0945-053x(96)90133-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030069767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0945-053x(96)90133-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030069767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.137.3.755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034120158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/387233a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040264012", 
          "https://doi.org/10.1038/387233a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-2126(00)00034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047864117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051907409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5315.1112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052668778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500005783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053869169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00130a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056179205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1279805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062471450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5304.1295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062555921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5315.1109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.347575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062616182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8079171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8153628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082463020", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-05", 
    "datePublishedReg": "1998-05-01", 
    "description": "Extracellular matrix proteins are thought to provide a rigid mechanical anchor that supports and guides migrating and rolling cells. Here we examine the mechanical properties of the extracellular matrix protein tenascin by using atomic-force-microscopy techniques. Our results indicate that tenascin is an elastic protein. Single molecules of tenascin could be stretched to several times their resting length. Force-extension curves showed a saw-tooth pattern, with peaks of force at 137pN. These peaks were approximately 25 nm apart. Similar results have been obtained by study of titin. We also found similar results by studying recombinant tenascin fragments encompassing the 15 fibronectin type III domains of tenascin. This indicates that the extensibility of tenascin may be due to the stretch-induced unfolding of its fibronectin type III domains. Refolding of tenascin after stretching, observed when the force was reduced to near zero, showed a double-exponential recovery with time constants of 42 domains refolded per second and 0.5 domains per second. The former speed of refolding is more than twice as fast as any previously reported speed of refolding of a fibronectin type III domain. We suggest that the extensibility of the modular fibronectin type III region may be important in allowing tenascin-ligand bonds to persist over long extensions. These properties of fibronectin type III modules may be of widespread use in extracellular proteins containing such domain.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/30270", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6681", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "393"
      }
    ], 
    "name": "The molecular elasticity of the extracellular matrix protein tenascin", 
    "pagination": "181-185", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "abf724e6b14bd67fa7833a3dba02c7251773c86b10094e81a914aa5d9e97b9df"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9603523"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/30270"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036099572"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/30270", 
      "https://app.dimensions.ai/details/publication/pub.1036099572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/30270"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/30270'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/30270'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/30270'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/30270'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      67 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/30270 schema:about N167f933ca6d74821b6e8288cbe995ee0
2 N2e73fc0524a54382a4b68bbd730f6c9a
3 N55b3cc6ebdcb4423adf7406e15827b6b
4 N6aaa416d2d3240aa888f38d12f011e36
5 N80471b03ff6c4133ae380fd7f47a816d
6 Naafb1ab1e3084852a1c9d052c04584eb
7 Nace2036b1db24b53a0d661e0018e587e
8 Nb5aae881723d4cbfa5eb9990143a0adb
9 Nd03c5f1f869448ef850c62b50e121a4b
10 Nd379b670f6ff4f2285766716d1142fe3
11 Ne6275e40e79c4f97aa27f5c3c4d0d01d
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author N0ef629d13c3e42cda93766b0ba3a8bc4
15 schema:citation sg:pub.10.1007/bf01921736
16 sg:pub.10.1038/374539a0
17 sg:pub.10.1038/385537a0
18 sg:pub.10.1038/387233a0
19 sg:pub.10.1038/387308a0
20 https://app.dimensions.ai/details/publication/pub.1082463020
21 https://doi.org/10.1006/jmbi.1997.1147
22 https://doi.org/10.1006/jmbi.1997.1148
23 https://doi.org/10.1016/0955-0674(93)90037-q
24 https://doi.org/10.1016/0956-5663(95)99227-c
25 https://doi.org/10.1016/s0006-3495(92)81577-1
26 https://doi.org/10.1016/s0092-8674(00)81280-5
27 https://doi.org/10.1016/s0945-053x(96)90133-x
28 https://doi.org/10.1016/s0969-2126(00)00034-4
29 https://doi.org/10.1017/s0033583500005783
30 https://doi.org/10.1021/ma00130a008
31 https://doi.org/10.1073/pnas.89.19.8990
32 https://doi.org/10.1073/pnas.93.20.10703
33 https://doi.org/10.1083/jcb.137.3.755
34 https://doi.org/10.1083/jcb.138.5.1169
35 https://doi.org/10.1126/science.1279805
36 https://doi.org/10.1126/science.275.5304.1295
37 https://doi.org/10.1126/science.276.5315.1109
38 https://doi.org/10.1126/science.276.5315.1112
39 https://doi.org/10.1126/science.347575
40 https://doi.org/10.1126/science.8079171
41 https://doi.org/10.1126/science.8153628
42 schema:datePublished 1998-05
43 schema:datePublishedReg 1998-05-01
44 schema:description Extracellular matrix proteins are thought to provide a rigid mechanical anchor that supports and guides migrating and rolling cells. Here we examine the mechanical properties of the extracellular matrix protein tenascin by using atomic-force-microscopy techniques. Our results indicate that tenascin is an elastic protein. Single molecules of tenascin could be stretched to several times their resting length. Force-extension curves showed a saw-tooth pattern, with peaks of force at 137pN. These peaks were approximately 25 nm apart. Similar results have been obtained by study of titin. We also found similar results by studying recombinant tenascin fragments encompassing the 15 fibronectin type III domains of tenascin. This indicates that the extensibility of tenascin may be due to the stretch-induced unfolding of its fibronectin type III domains. Refolding of tenascin after stretching, observed when the force was reduced to near zero, showed a double-exponential recovery with time constants of 42 domains refolded per second and 0.5 domains per second. The former speed of refolding is more than twice as fast as any previously reported speed of refolding of a fibronectin type III domain. We suggest that the extensibility of the modular fibronectin type III region may be important in allowing tenascin-ligand bonds to persist over long extensions. These properties of fibronectin type III modules may be of widespread use in extracellular proteins containing such domain.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N47c653510e904053be017ade127d8dae
49 Nb617f92ca983457b8519aa2748b746a6
50 sg:journal.1018957
51 schema:name The molecular elasticity of the extracellular matrix protein tenascin
52 schema:pagination 181-185
53 schema:productId N6ea424b914544b5288ad17e7c8821248
54 N6fab2c78a300468a85d9782f70ce836d
55 Nbed558a6fe234547b2028c3797a3954f
56 Nd966a24452c54241a997531364472799
57 Nf1511029f64b4264bf92f20a417aff55
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036099572
59 https://doi.org/10.1038/30270
60 schema:sdDatePublished 2019-04-11T12:23
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nd9b042484b2148ca90cb670ba3ee96df
63 schema:url http://www.nature.com/articles/30270
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N00f7e7a6d753420da5a643d555ccacbe rdf:first sg:person.0674752752.84
68 rdf:rest rdf:nil
69 N0ef629d13c3e42cda93766b0ba3a8bc4 rdf:first sg:person.01266230142.69
70 rdf:rest Nd3c8a019c06146cf9aaeb95b77da4750
71 N167f933ca6d74821b6e8288cbe995ee0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Monte Carlo Method
73 rdf:type schema:DefinedTerm
74 N2e73fc0524a54382a4b68bbd730f6c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Microscopy, Atomic Force
76 rdf:type schema:DefinedTerm
77 N3cb64f157dd34e058514152c4d48f8af rdf:first sg:person.01354743721.34
78 rdf:rest N00f7e7a6d753420da5a643d555ccacbe
79 N47c653510e904053be017ade127d8dae schema:issueNumber 6681
80 rdf:type schema:PublicationIssue
81 N55b3cc6ebdcb4423adf7406e15827b6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Protein Folding
83 rdf:type schema:DefinedTerm
84 N6aaa416d2d3240aa888f38d12f011e36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Humans
86 rdf:type schema:DefinedTerm
87 N6ea424b914544b5288ad17e7c8821248 schema:name nlm_unique_id
88 schema:value 0410462
89 rdf:type schema:PropertyValue
90 N6fab2c78a300468a85d9782f70ce836d schema:name readcube_id
91 schema:value abf724e6b14bd67fa7833a3dba02c7251773c86b10094e81a914aa5d9e97b9df
92 rdf:type schema:PropertyValue
93 N80471b03ff6c4133ae380fd7f47a816d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Elasticity
95 rdf:type schema:DefinedTerm
96 Naafb1ab1e3084852a1c9d052c04584eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Peptide Fragments
98 rdf:type schema:DefinedTerm
99 Nace2036b1db24b53a0d661e0018e587e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Binding Sites
101 rdf:type schema:DefinedTerm
102 Nb5aae881723d4cbfa5eb9990143a0adb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Tenascin
104 rdf:type schema:DefinedTerm
105 Nb617f92ca983457b8519aa2748b746a6 schema:volumeNumber 393
106 rdf:type schema:PublicationVolume
107 Nbed558a6fe234547b2028c3797a3954f schema:name doi
108 schema:value 10.1038/30270
109 rdf:type schema:PropertyValue
110 Nd03c5f1f869448ef850c62b50e121a4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Alternative Splicing
112 rdf:type schema:DefinedTerm
113 Nd379b670f6ff4f2285766716d1142fe3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Recombinant Proteins
115 rdf:type schema:DefinedTerm
116 Nd3c8a019c06146cf9aaeb95b77da4750 rdf:first sg:person.01031042222.24
117 rdf:rest N3cb64f157dd34e058514152c4d48f8af
118 Nd966a24452c54241a997531364472799 schema:name dimensions_id
119 schema:value pub.1036099572
120 rdf:type schema:PropertyValue
121 Nd9b042484b2148ca90cb670ba3ee96df schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Ne6275e40e79c4f97aa27f5c3c4d0d01d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Fibronectins
125 rdf:type schema:DefinedTerm
126 Nf1511029f64b4264bf92f20a417aff55 schema:name pubmed_id
127 schema:value 9603523
128 rdf:type schema:PropertyValue
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biochemistry and Cell Biology
134 rdf:type schema:DefinedTerm
135 sg:journal.1018957 schema:issn 0090-0028
136 1476-4687
137 schema:name Nature
138 rdf:type schema:Periodical
139 sg:person.01031042222.24 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
140 schema:familyName Marszalek
141 schema:givenName Piotr E.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031042222.24
143 rdf:type schema:Person
144 sg:person.01266230142.69 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
145 schema:familyName Oberhauser
146 schema:givenName Andres F.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266230142.69
148 rdf:type schema:Person
149 sg:person.01354743721.34 schema:affiliation https://www.grid.ac/institutes/grid.189509.c
150 schema:familyName Erickson
151 schema:givenName Harold P.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354743721.34
153 rdf:type schema:Person
154 sg:person.0674752752.84 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
155 schema:familyName Fernandez
156 schema:givenName Julio M.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674752752.84
158 rdf:type schema:Person
159 sg:pub.10.1007/bf01921736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026442458
160 https://doi.org/10.1007/bf01921736
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/374539a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023907545
163 https://doi.org/10.1038/374539a0
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/385537a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016390960
166 https://doi.org/10.1038/385537a0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/387233a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040264012
169 https://doi.org/10.1038/387233a0
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/387308a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012750390
172 https://doi.org/10.1038/387308a0
173 rdf:type schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1082463020 schema:CreativeWork
175 https://doi.org/10.1006/jmbi.1997.1147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006519571
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1006/jmbi.1997.1148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051907409
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0955-0674(93)90037-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1029332681
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0956-5663(95)99227-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1008390742
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0006-3495(92)81577-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003442575
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0092-8674(00)81280-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014825070
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0945-053x(96)90133-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030069767
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0969-2126(00)00034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047864117
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1017/s0033583500005783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053869169
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/ma00130a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056179205
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1073/pnas.89.19.8990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022112761
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1073/pnas.93.20.10703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006297008
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1083/jcb.137.3.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034120158
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1083/jcb.138.5.1169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022266247
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.1279805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062471450
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1126/science.275.5304.1295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555921
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1126/science.276.5315.1109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556719
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1126/science.276.5315.1112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052668778
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.347575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062616182
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1126/science.8079171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652183
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.8153628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652966
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.189509.c schema:alternateName Duke University Hospital
218 schema:name *Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.66875.3a schema:alternateName Mayo Clinic
221 schema:name Department of Physiology and Biophysics, Mayo Foundation, Rochester, Minnesota 55905, USA
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...