Formation of proinsulin by immobilized Bacillus subtilis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1983-04

AUTHORS

Klaus Mosbach, Staffan Birnbaum, Kim Hardy, Julian Davies, Leif Bülow

ABSTRACT

There has been an increasing interest in the use of immobilized cells for the production of pharmaceuticals as well as for products such as high fructose syrup or ethanol. Some of these compounds are now produced on an industrial scale whereby the cells are used in a resting or growing state or in a nonviable form as natural carriers of the enzyme(s) involved in the synthesis. The advantages of immobilized cell technology should also apply to microorganisms modified by recombinant DNA techniques to produce a variety of eukaryotic proteins such as hormones. We describe here the properties of immobilized Bacillus subtilis cells carrying plasmids encoding rat proinsulin. Cell proliferation normally coupled to DNA replication is undesirable in immobilized cell systems as "clogging' of the system occurs due to cells growing outside the beads. Therefore, different ways were investigated to inhibit cell division while allowing continued protein synthesis. We found that the addition of certain antibiotics in the growth medium, such as novobiocin which inhibits DNA replication, fulfills these requirements, allowing proinsulin synthesis and excretion to take place over a period of several days. More... »

PAGES

543-545

Journal

TITLE

Nature

ISSUE

5908

VOLUME

302

Related Patents

  • Formulations Of Human Growth Hormone Comprising A Non-Naturally Encoded Amino Acid At Position 35
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Modified Interferon Beta Polypeptides And Their Uses
  • Down-Regulation And Silencing Of Allergen Genes In Transgenic Peanut Seeds
  • Methods And Compositions Comprising Non-Natural Amino Acids
  • Nucleic Acids Encoding Modified Fgf-21 Polypeptides Comprising Non-Naturally Occurring Amino Acids
  • Modified Animal Erythropoietin Polypeptides And Their Uses
  • Irak 1c Splice Variant And Its Use
  • Development Of Novel Macromolecule Transduction Domain With Improved Cell Permeability And Method For Using Same
  • Modified Fgf-21 Polypeptides Comprising An Internal Deletion And Uses Thereof
  • Non-Natural Amino Acid Replication-Dependent Microorganisms And Vaccines
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Modified Fgf-21 Polypeptides And Their Uses
  • Modified Human Plasma Polypeptide Or Fc Scaffolds And Their Uses
  • Modified Human Growth Horomone Polypeptides And Their Uses
  • Modified Human Plasma Polypeptide Or Fc Scaffolds And Their Uses
  • Relaxin Polypeptides Comprising Non-Naturally Encoded Amino Acids
  • Modified Human Interferon Polypeptides And Their Uses
  • Modified Human Growth Hormone Formulations With An Increased Serum Half-Life
  • Method Of Treating Heart Failure With Modified Relaxin Polypeptides
  • Modified Human Growth Hormone
  • Modified Animal Erythropoietin Polypeptides And Their Uses
  • Modified Animal Erythropoietin Polypeptides And Their Uses
  • System Useful For The Production Of Proteins From Recombinant Dna In Single Celled Organisms
  • Modified Human Four Helical Bundle Polypeptides And Their Uses
  • Control Of Aberrant Expression Vector Accumulation During Fermentation Procedures
  • Human Growth Hormone Modified At Position 35
  • Nucleic Acids Encoding Modified Relaxin Polypeptides
  • Modified Human Four Helical Bundle Polypeptides And Their Uses
  • Modified Fgf-21 Polypeptides Comprising An Internal Deletion And Uses Thereof
  • Crhr2 Peptide Agonists And Uses Thereof
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Antigen-Binding Polypeptides And Their Uses
  • Methods Of Making Fgf-21 Mutants Comprising Non-Naturally Encoded Phenylalanine Derivatives
  • Models Of Thrombotic Thrombocytopenic Purpura And Methods Of Use Thereof
  • Modified Fgf-21 Polypeptides Comprising Non-Naturally Occurring Amino Acids
  • Process Of Producing Non-Naturally Encoded Amino Acid Containing High Conjugated To A Water Soluble Polymer
  • Modified Animal Erythropoietin Polypeptides And Their Uses
  • Methods For Expression And Purification Of Recombinant Human Growth Hormone Mutants
  • Thermomyces Lanuginosus Kinesin Motor Protein And Methods Of Screening For Modulators Of Kinesin Proteins
  • Pegylated Human Interferon Polypeptides
  • Suppressor Trna Transcription In Vertebrate Cells
  • Development Of Novel Macromolecule Transduction Domain With Improved Cell Permeability And Method For Using Same
  • Identification And Expression Of A Novel Kinesin Motor Protein
  • Methods Of Treatment Using Modified Fgf-21 Polypeptides Comprising Non-Naturally Occurring Amino Acids
  • Non-Natural Amino Acid Replication-Dependent Microorganisms And Vaccines
  • Therapeutic Uses Of Modified Relaxin Polypeptides
  • Modified Insulin Polypeptides And Their Uses
  • Modified Human Interferon Polypeptides And Their Uses
  • Site-Specific Labeling Of Affinity Tags In Fusion Proteins
  • Modified Human Four Helical Bundle Polypeptides And Their Uses
  • Modified Leptin Polypeptides And Their Uses
  • Formulations Of Human Growth Hormone Comprising A Non-Naturally Encoded Amino Acid
  • Method For The Biosynthesis Of Taurine Or Hypotaurine In Cells
  • Modified Human Plasma Polypeptide Or Fc Scaffolds And Their Uses
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Methods For Expression And Purification Of Pegylated Recombinant Human Growth Hormone Containing A Non-Naturally Encoded Keto Amino Acid
  • Modified Human Interferon Polypeptides With At Least One Non-Naturally Encoded Amino Acid And Their Uses
  • Control Of Aberrant Expression Vector Accumulation During Fermentation Procedures
  • Methods For Expression And Purification Of Recombinant Human Growth Hormone
  • Identification And Expression Of A Novel Kinesin Motor Protein
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/302543a0

    DOI

    http://dx.doi.org/10.1038/302543a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014697974

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/6403870


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacillus subtilis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Division", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cells, Immobilized", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cloning, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Novobiocin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxygen Consumption", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proinsulin", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Mosbach", 
            "givenName": "Klaus", 
            "id": "sg:person.01362574601.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362574601.27"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Birnbaum", 
            "givenName": "Staffan", 
            "id": "sg:person.012720513767.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012720513767.08"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Hardy", 
            "givenName": "Kim", 
            "type": "Person"
          }, 
          {
            "familyName": "Davies", 
            "givenName": "Julian", 
            "type": "Person"
          }, 
          {
            "familyName": "B\u00fclow", 
            "givenName": "Leif", 
            "id": "sg:person.012074447671.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012074447671.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.73.12.4474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002511452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00144316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026778042", 
              "https://doi.org/10.1007/bf00144316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00144316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026778042", 
              "https://doi.org/10.1007/bf00144316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/293481a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027393864", 
              "https://doi.org/10.1038/293481a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-5793(80)80463-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034460040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/9.11.2577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035139181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00507997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035467390", 
              "https://doi.org/10.1007/bf00507997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00507997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035467390", 
              "https://doi.org/10.1007/bf00507997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.77.6.3369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046373200"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1983-04", 
        "datePublishedReg": "1983-04-01", 
        "description": "There has been an increasing interest in the use of immobilized cells for the production of pharmaceuticals as well as for products such as high fructose syrup or ethanol. Some of these compounds are now produced on an industrial scale whereby the cells are used in a resting or growing state or in a nonviable form as natural carriers of the enzyme(s) involved in the synthesis. The advantages of immobilized cell technology should also apply to microorganisms modified by recombinant DNA techniques to produce a variety of eukaryotic proteins such as hormones. We describe here the properties of immobilized Bacillus subtilis cells carrying plasmids encoding rat proinsulin. Cell proliferation normally coupled to DNA replication is undesirable in immobilized cell systems as \"clogging' of the system occurs due to cells growing outside the beads. Therefore, different ways were investigated to inhibit cell division while allowing continued protein synthesis. We found that the addition of certain antibiotics in the growth medium, such as novobiocin which inhibits DNA replication, fulfills these requirements, allowing proinsulin synthesis and excretion to take place over a period of several days.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/302543a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5908", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "302"
          }
        ], 
        "name": "Formation of proinsulin by immobilized Bacillus subtilis", 
        "pagination": "543-545", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "46062f27ed996fce1eaa6c23df5261a6191103334d18591da0f7d5a93fbc66dd"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "6403870"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/302543a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014697974"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/302543a0", 
          "https://app.dimensions.ai/details/publication/pub.1014697974"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000422.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nature/journal/v302/n5908/full/302543a0.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/302543a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/302543a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/302543a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/302543a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    143 TRIPLES      21 PREDICATES      44 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/302543a0 schema:about N091107160d254d48988debe5f16d3b3a
    2 N17e9f0d5e2cf433e996480f7c2018192
    3 N33161e6150c34cc3b01d763542cb67b1
    4 N3a844e85ab1e45d0a4d68ee9e6d982a1
    5 N5117319ca26e49919c05b6205ee717dd
    6 N5c484dd0feb241e49135e950f5d2f89b
    7 N9ac49fd2610b4130ad34ae93bc923038
    8 Nd1d96d82648e4df79f41c572e393207b
    9 anzsrc-for:06
    10 anzsrc-for:0601
    11 schema:author N7ae58056619140e892265b648dbdd10f
    12 schema:citation sg:pub.10.1007/bf00144316
    13 sg:pub.10.1007/bf00507997
    14 sg:pub.10.1038/293481a0
    15 https://doi.org/10.1016/0014-5793(80)80463-7
    16 https://doi.org/10.1073/pnas.73.12.4474
    17 https://doi.org/10.1073/pnas.77.6.3369
    18 https://doi.org/10.1093/nar/9.11.2577
    19 schema:datePublished 1983-04
    20 schema:datePublishedReg 1983-04-01
    21 schema:description There has been an increasing interest in the use of immobilized cells for the production of pharmaceuticals as well as for products such as high fructose syrup or ethanol. Some of these compounds are now produced on an industrial scale whereby the cells are used in a resting or growing state or in a nonviable form as natural carriers of the enzyme(s) involved in the synthesis. The advantages of immobilized cell technology should also apply to microorganisms modified by recombinant DNA techniques to produce a variety of eukaryotic proteins such as hormones. We describe here the properties of immobilized Bacillus subtilis cells carrying plasmids encoding rat proinsulin. Cell proliferation normally coupled to DNA replication is undesirable in immobilized cell systems as "clogging' of the system occurs due to cells growing outside the beads. Therefore, different ways were investigated to inhibit cell division while allowing continued protein synthesis. We found that the addition of certain antibiotics in the growth medium, such as novobiocin which inhibits DNA replication, fulfills these requirements, allowing proinsulin synthesis and excretion to take place over a period of several days.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N22691feee3814971a4bfe19198729d33
    26 Nc3a7b9de36574ccf8ca8b3eed8e23f34
    27 sg:journal.1018957
    28 schema:name Formation of proinsulin by immobilized Bacillus subtilis
    29 schema:pagination 543-545
    30 schema:productId N1de8416dcdc34219887e0375288c3af0
    31 N7f11e32d40e54547a3ce11d0753f913f
    32 Nb7e57ea4b58a48f7b018e9e9fc8f8e41
    33 Nc616d7a91e7648d087f7aff66a7b90a4
    34 Nd30c17c7ec304e0d96de3e2fcce66126
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014697974
    36 https://doi.org/10.1038/302543a0
    37 schema:sdDatePublished 2019-04-10T15:38
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Ndb5b53364a2c476296a511e52008a621
    40 schema:url http://www.nature.com/nature/journal/v302/n5908/full/302543a0.html
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N091107160d254d48988debe5f16d3b3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    45 schema:name Oxygen Consumption
    46 rdf:type schema:DefinedTerm
    47 N0a0114b2cd164aff8e238bb872b83149 rdf:first Nfd6c126b14f8452a991d478c6ea36eb0
    48 rdf:rest N97eb789b59c14de2892e76f12d056fc0
    49 N17e9f0d5e2cf433e996480f7c2018192 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    50 schema:name Cells, Immobilized
    51 rdf:type schema:DefinedTerm
    52 N1de8416dcdc34219887e0375288c3af0 schema:name readcube_id
    53 schema:value 46062f27ed996fce1eaa6c23df5261a6191103334d18591da0f7d5a93fbc66dd
    54 rdf:type schema:PropertyValue
    55 N22691feee3814971a4bfe19198729d33 schema:issueNumber 5908
    56 rdf:type schema:PublicationIssue
    57 N33161e6150c34cc3b01d763542cb67b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    58 schema:name Proinsulin
    59 rdf:type schema:DefinedTerm
    60 N3a844e85ab1e45d0a4d68ee9e6d982a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name Bacillus subtilis
    62 rdf:type schema:DefinedTerm
    63 N5117319ca26e49919c05b6205ee717dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    64 schema:name Cloning, Molecular
    65 rdf:type schema:DefinedTerm
    66 N5c484dd0feb241e49135e950f5d2f89b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Plasmids
    68 rdf:type schema:DefinedTerm
    69 N6a44bfc37dfd481b909616d5821dc161 rdf:first sg:person.012720513767.08
    70 rdf:rest N0a0114b2cd164aff8e238bb872b83149
    71 N718a8074d53e4f5787247d3bc6b0cd06 schema:familyName Davies
    72 schema:givenName Julian
    73 rdf:type schema:Person
    74 N7ae58056619140e892265b648dbdd10f rdf:first sg:person.01362574601.27
    75 rdf:rest N6a44bfc37dfd481b909616d5821dc161
    76 N7f11e32d40e54547a3ce11d0753f913f schema:name nlm_unique_id
    77 schema:value 0410462
    78 rdf:type schema:PropertyValue
    79 N97eb789b59c14de2892e76f12d056fc0 rdf:first N718a8074d53e4f5787247d3bc6b0cd06
    80 rdf:rest Nbb1b75b30f1f4f14a220e54ee803b7a9
    81 N9ac49fd2610b4130ad34ae93bc923038 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Novobiocin
    83 rdf:type schema:DefinedTerm
    84 Nb7e57ea4b58a48f7b018e9e9fc8f8e41 schema:name dimensions_id
    85 schema:value pub.1014697974
    86 rdf:type schema:PropertyValue
    87 Nbb1b75b30f1f4f14a220e54ee803b7a9 rdf:first sg:person.012074447671.58
    88 rdf:rest rdf:nil
    89 Nc3a7b9de36574ccf8ca8b3eed8e23f34 schema:volumeNumber 302
    90 rdf:type schema:PublicationVolume
    91 Nc616d7a91e7648d087f7aff66a7b90a4 schema:name pubmed_id
    92 schema:value 6403870
    93 rdf:type schema:PropertyValue
    94 Nd1d96d82648e4df79f41c572e393207b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Cell Division
    96 rdf:type schema:DefinedTerm
    97 Nd30c17c7ec304e0d96de3e2fcce66126 schema:name doi
    98 schema:value 10.1038/302543a0
    99 rdf:type schema:PropertyValue
    100 Ndb5b53364a2c476296a511e52008a621 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 Nfd6c126b14f8452a991d478c6ea36eb0 schema:familyName Hardy
    103 schema:givenName Kim
    104 rdf:type schema:Person
    105 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Biological Sciences
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Biochemistry and Cell Biology
    110 rdf:type schema:DefinedTerm
    111 sg:journal.1018957 schema:issn 0090-0028
    112 1476-4687
    113 schema:name Nature
    114 rdf:type schema:Periodical
    115 sg:person.012074447671.58 schema:familyName Bülow
    116 schema:givenName Leif
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012074447671.58
    118 rdf:type schema:Person
    119 sg:person.012720513767.08 schema:familyName Birnbaum
    120 schema:givenName Staffan
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012720513767.08
    122 rdf:type schema:Person
    123 sg:person.01362574601.27 schema:familyName Mosbach
    124 schema:givenName Klaus
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362574601.27
    126 rdf:type schema:Person
    127 sg:pub.10.1007/bf00144316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026778042
    128 https://doi.org/10.1007/bf00144316
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf00507997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035467390
    131 https://doi.org/10.1007/bf00507997
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/293481a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027393864
    134 https://doi.org/10.1038/293481a0
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/0014-5793(80)80463-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034460040
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1073/pnas.73.12.4474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002511452
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1073/pnas.77.6.3369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046373200
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1093/nar/9.11.2577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035139181
    143 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...