Effect of an allozyme polymorphism on regulation of cell volume View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-08

AUTHORS

Thomas J. Hilbish, Lewis E. Deaton, Richard K. Koehn

ABSTRACT

Biochemical differences have been described among allozymes1–4, but the physiological consequences (that is, physiological phenotypes) of such differences have only rarely been demonstrated5–7. Such a relationship is necessary both to the argument that natural selection maintains allozymic diversity in natural populations and for understanding biochemical mechanisms of adaptation8. We report here a genotype-dependent difference in the rate of cellular free amino acid accumulation during adjustment to hyperosmotic conditions in the mussel Mytilus edulis. The product of the Lap locus in M. edulis is the lysosomal enzyme aminopeptidase-I (AM-I; E.C.3.4.11.-) which hydrolyses oligopeptides to their constituent amino acids9. Total AM-I activity is positively correlated with salinity; a 120% increase in salinity increases AM-I activity twofold10–13. Adjustment to hyperosmotic stress in osmoconforming marine bivalves, including M. edulis, involves rapid accumulation of cellular free amino acids14,15. The biochemical properties of AM-I, and its activation by salinity changes, suggest that it is important for providing cellular free amino acid pools during adjustment to hyperosmotic stress11. We show that individuals carrying the allele for high catalytic efficiency (kcat) accumulated cellular amino acids more rapidly than other genotypes. The difference in accumulation rate was also demonstrated by an interruption of hyperosmotic adjustment, which resulted in genotype-dependent rates of amino acid excretion. These results demonstrate the role of AM-I in the physiological processes that regulate cell volume. Thus, differing catalytic properties of allozymes are manifested as phenotypic differences at the physiological level and provide a mechanism for the known selective mortality of mussels in natural populations7. More... »

PAGES

688

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/298688a0

DOI

http://dx.doi.org/10.1038/298688a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006337154

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7099266


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0606", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aminopeptidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bivalvia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocyte Indices", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water-Electrolyte Balance", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Hilbish", 
        "givenName": "Thomas J.", 
        "id": "sg:person.01322332732.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322332732.16"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Deaton", 
        "givenName": "Lewis E.", 
        "id": "sg:person.01212744674.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212744674.18"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Koehn", 
        "givenName": "Richard K.", 
        "id": "sg:person.01043323060.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043323060.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4319/lo.1975.20.1.0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001157476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.78.7.4444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002325378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00484570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003612065", 
          "https://doi.org/10.1007/bf00484570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00484570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003612065", 
          "https://doi.org/10.1007/bf00484570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.76.5.2354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012980011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.1402140302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013421978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.1402140302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013421978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.1402030309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014556339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.1402030309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014556339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.9.5385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018647883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00486143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023445281", 
          "https://doi.org/10.1007/bf00486143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00486143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023445281", 
          "https://doi.org/10.1007/bf00486143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00498971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028905642", 
          "https://doi.org/10.1007/bf00498971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00498971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028905642", 
          "https://doi.org/10.1007/bf00498971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8312.1980.tb00112.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031269877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/277240a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036459662", 
          "https://doi.org/10.1038/277240a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/o64-010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037030540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00484569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044540578", 
          "https://doi.org/10.1007/bf00484569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00484569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044540578", 
          "https://doi.org/10.1007/bf00484569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081957301", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1976.tb00878.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085737261"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-08", 
    "datePublishedReg": "1982-08-01", 
    "description": "Biochemical differences have been described among allozymes1\u20134, but the physiological consequences (that is, physiological phenotypes) of such differences have only rarely been demonstrated5\u20137. Such a relationship is necessary both to the argument that natural selection maintains allozymic diversity in natural populations and for understanding biochemical mechanisms of adaptation8. We report here a genotype-dependent difference in the rate of cellular free amino acid accumulation during adjustment to hyperosmotic conditions in the mussel Mytilus edulis. The product of the Lap locus in M. edulis is the lysosomal enzyme aminopeptidase-I (AM-I; E.C.3.4.11.-) which hydrolyses oligopeptides to their constituent amino acids9. Total AM-I activity is positively correlated with salinity; a 120% increase in salinity increases AM-I activity twofold10\u201313. Adjustment to hyperosmotic stress in osmoconforming marine bivalves, including M. edulis, involves rapid accumulation of cellular free amino acids14,15. The biochemical properties of AM-I, and its activation by salinity changes, suggest that it is important for providing cellular free amino acid pools during adjustment to hyperosmotic stress11. We show that individuals carrying the allele for high catalytic efficiency (kcat) accumulated cellular amino acids more rapidly than other genotypes. The difference in accumulation rate was also demonstrated by an interruption of hyperosmotic adjustment, which resulted in genotype-dependent rates of amino acid excretion. These results demonstrate the role of AM-I in the physiological processes that regulate cell volume. Thus, differing catalytic properties of allozymes are manifested as phenotypic differences at the physiological level and provide a mechanism for the known selective mortality of mussels in natural populations7.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/298688a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5875", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "298"
      }
    ], 
    "name": "Effect of an allozyme polymorphism on regulation of cell volume", 
    "pagination": "688", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e2f6934bbdfcf3b2d95a417a1616ab52a6e6b20026b6a4321f15ced32521cb3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7099266"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/298688a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006337154"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/298688a0", 
      "https://app.dimensions.ai/details/publication/pub.1006337154"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/298688a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/298688a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/298688a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/298688a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/298688a0'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      50 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/298688a0 schema:about N3317eb516c524692a896576a4685fbf1
2 N41ad981f9859411aaedf0294e36edc87
3 N77c3aeccdc1b45ea92d7d38b4d7a6c71
4 N969c2fe43caa4af2a3db8ff378103183
5 Nbbba3804fedf4f02a46eacc640e870a5
6 Ncaedb079bcdc4d2aa04770d15ddf16f9
7 anzsrc-for:06
8 anzsrc-for:0606
9 schema:author Nfd20db4777594757b23c8c13d5d4ca97
10 schema:citation sg:pub.10.1007/bf00484569
11 sg:pub.10.1007/bf00484570
12 sg:pub.10.1007/bf00486143
13 sg:pub.10.1007/bf00498971
14 sg:pub.10.1038/277240a0
15 https://app.dimensions.ai/details/publication/pub.1081957301
16 https://doi.org/10.1002/jez.1402030309
17 https://doi.org/10.1002/jez.1402140302
18 https://doi.org/10.1073/pnas.76.5.2354
19 https://doi.org/10.1073/pnas.77.9.5385
20 https://doi.org/10.1073/pnas.78.7.4444
21 https://doi.org/10.1111/j.1095-8312.1980.tb00112.x
22 https://doi.org/10.1111/j.1558-5646.1976.tb00878.x
23 https://doi.org/10.1139/o64-010
24 https://doi.org/10.4319/lo.1975.20.1.0020
25 schema:datePublished 1982-08
26 schema:datePublishedReg 1982-08-01
27 schema:description Biochemical differences have been described among allozymes1–4, but the physiological consequences (that is, physiological phenotypes) of such differences have only rarely been demonstrated5–7. Such a relationship is necessary both to the argument that natural selection maintains allozymic diversity in natural populations and for understanding biochemical mechanisms of adaptation8. We report here a genotype-dependent difference in the rate of cellular free amino acid accumulation during adjustment to hyperosmotic conditions in the mussel Mytilus edulis. The product of the Lap locus in M. edulis is the lysosomal enzyme aminopeptidase-I (AM-I; E.C.3.4.11.-) which hydrolyses oligopeptides to their constituent amino acids9. Total AM-I activity is positively correlated with salinity; a 120% increase in salinity increases AM-I activity twofold10–13. Adjustment to hyperosmotic stress in osmoconforming marine bivalves, including M. edulis, involves rapid accumulation of cellular free amino acids14,15. The biochemical properties of AM-I, and its activation by salinity changes, suggest that it is important for providing cellular free amino acid pools during adjustment to hyperosmotic stress11. We show that individuals carrying the allele for high catalytic efficiency (kcat) accumulated cellular amino acids more rapidly than other genotypes. The difference in accumulation rate was also demonstrated by an interruption of hyperosmotic adjustment, which resulted in genotype-dependent rates of amino acid excretion. These results demonstrate the role of AM-I in the physiological processes that regulate cell volume. Thus, differing catalytic properties of allozymes are manifested as phenotypic differences at the physiological level and provide a mechanism for the known selective mortality of mussels in natural populations7.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N11f216db24934c12960b47f847f0215f
32 Ne0e463fe75724c01989b2f7dbedec23b
33 sg:journal.1018957
34 schema:name Effect of an allozyme polymorphism on regulation of cell volume
35 schema:pagination 688
36 schema:productId N25a0dc02bb8449648a4f0f09bbdb12bf
37 N37679f4d82a74a119f5361de403d1e0d
38 N7044eb706740419caafad9d76eec5467
39 Nbb4ab86f4e2342989d4bebee5bada3e4
40 Nf455b6dcc9364252aa0123dadbf19ccc
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006337154
42 https://doi.org/10.1038/298688a0
43 schema:sdDatePublished 2019-04-10T19:45
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nf20615a77c924a289d2e71b0379648a6
46 schema:url https://www.nature.com/articles/298688a0
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N11f216db24934c12960b47f847f0215f schema:issueNumber 5875
51 rdf:type schema:PublicationIssue
52 N25a0dc02bb8449648a4f0f09bbdb12bf schema:name readcube_id
53 schema:value 1e2f6934bbdfcf3b2d95a417a1616ab52a6e6b20026b6a4321f15ced32521cb3
54 rdf:type schema:PropertyValue
55 N2f376d944e1c4fe9b9cfcb5d1cf187c6 rdf:first sg:person.01043323060.75
56 rdf:rest rdf:nil
57 N3317eb516c524692a896576a4685fbf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Water-Electrolyte Balance
59 rdf:type schema:DefinedTerm
60 N37679f4d82a74a119f5361de403d1e0d schema:name pubmed_id
61 schema:value 7099266
62 rdf:type schema:PropertyValue
63 N41ad981f9859411aaedf0294e36edc87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Alleles
65 rdf:type schema:DefinedTerm
66 N4a045cafa6b04e42999f1ef49cb0aca7 rdf:first sg:person.01212744674.18
67 rdf:rest N2f376d944e1c4fe9b9cfcb5d1cf187c6
68 N7044eb706740419caafad9d76eec5467 schema:name nlm_unique_id
69 schema:value 0410462
70 rdf:type schema:PropertyValue
71 N77c3aeccdc1b45ea92d7d38b4d7a6c71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Polymorphism, Genetic
73 rdf:type schema:DefinedTerm
74 N969c2fe43caa4af2a3db8ff378103183 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Erythrocyte Indices
76 rdf:type schema:DefinedTerm
77 Nbb4ab86f4e2342989d4bebee5bada3e4 schema:name dimensions_id
78 schema:value pub.1006337154
79 rdf:type schema:PropertyValue
80 Nbbba3804fedf4f02a46eacc640e870a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Aminopeptidases
82 rdf:type schema:DefinedTerm
83 Ncaedb079bcdc4d2aa04770d15ddf16f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Bivalvia
85 rdf:type schema:DefinedTerm
86 Ne0e463fe75724c01989b2f7dbedec23b schema:volumeNumber 298
87 rdf:type schema:PublicationVolume
88 Nf20615a77c924a289d2e71b0379648a6 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nf455b6dcc9364252aa0123dadbf19ccc schema:name doi
91 schema:value 10.1038/298688a0
92 rdf:type schema:PropertyValue
93 Nfd20db4777594757b23c8c13d5d4ca97 rdf:first sg:person.01322332732.16
94 rdf:rest N4a045cafa6b04e42999f1ef49cb0aca7
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0606 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physiology
100 rdf:type schema:DefinedTerm
101 sg:journal.1018957 schema:issn 0090-0028
102 1476-4687
103 schema:name Nature
104 rdf:type schema:Periodical
105 sg:person.01043323060.75 schema:familyName Koehn
106 schema:givenName Richard K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043323060.75
108 rdf:type schema:Person
109 sg:person.01212744674.18 schema:familyName Deaton
110 schema:givenName Lewis E.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212744674.18
112 rdf:type schema:Person
113 sg:person.01322332732.16 schema:familyName Hilbish
114 schema:givenName Thomas J.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322332732.16
116 rdf:type schema:Person
117 sg:pub.10.1007/bf00484569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044540578
118 https://doi.org/10.1007/bf00484569
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00484570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003612065
121 https://doi.org/10.1007/bf00484570
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf00486143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023445281
124 https://doi.org/10.1007/bf00486143
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf00498971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028905642
127 https://doi.org/10.1007/bf00498971
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/277240a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036459662
130 https://doi.org/10.1038/277240a0
131 rdf:type schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1081957301 schema:CreativeWork
133 https://doi.org/10.1002/jez.1402030309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014556339
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/jez.1402140302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013421978
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.76.5.2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012980011
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1073/pnas.77.9.5385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018647883
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.78.7.4444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002325378
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1111/j.1095-8312.1980.tb00112.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031269877
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1111/j.1558-5646.1976.tb00878.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085737261
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1139/o64-010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037030540
148 rdf:type schema:CreativeWork
149 https://doi.org/10.4319/lo.1975.20.1.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001157476
150 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...