Effect of an allozyme polymorphism on regulation of cell volume View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-08

AUTHORS

Thomas J. Hilbish, Lewis E. Deaton, Richard K. Koehn

ABSTRACT

Biochemical differences have been described among allozymes1–4, but the physiological consequences (that is, physiological phenotypes) of such differences have only rarely been demonstrated5–7. Such a relationship is necessary both to the argument that natural selection maintains allozymic diversity in natural populations and for understanding biochemical mechanisms of adaptation8. We report here a genotype-dependent difference in the rate of cellular free amino acid accumulation during adjustment to hyperosmotic conditions in the mussel Mytilus edulis. The product of the Lap locus in M. edulis is the lysosomal enzyme aminopeptidase-I (AM-I; E.C.3.4.11.-) which hydrolyses oligopeptides to their constituent amino acids9. Total AM-I activity is positively correlated with salinity; a 120% increase in salinity increases AM-I activity twofold10–13. Adjustment to hyperosmotic stress in osmoconforming marine bivalves, including M. edulis, involves rapid accumulation of cellular free amino acids14,15. The biochemical properties of AM-I, and its activation by salinity changes, suggest that it is important for providing cellular free amino acid pools during adjustment to hyperosmotic stress11. We show that individuals carrying the allele for high catalytic efficiency (kcat) accumulated cellular amino acids more rapidly than other genotypes. The difference in accumulation rate was also demonstrated by an interruption of hyperosmotic adjustment, which resulted in genotype-dependent rates of amino acid excretion. These results demonstrate the role of AM-I in the physiological processes that regulate cell volume. Thus, differing catalytic properties of allozymes are manifested as phenotypic differences at the physiological level and provide a mechanism for the known selective mortality of mussels in natural populations7. More... »

PAGES

688

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/298688a0

DOI

http://dx.doi.org/10.1038/298688a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006337154

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7099266


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0606", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aminopeptidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bivalvia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocyte Indices", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water-Electrolyte Balance", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Hilbish", 
        "givenName": "Thomas J.", 
        "id": "sg:person.01322332732.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322332732.16"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Deaton", 
        "givenName": "Lewis E.", 
        "id": "sg:person.01212744674.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212744674.18"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Koehn", 
        "givenName": "Richard K.", 
        "id": "sg:person.01043323060.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043323060.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4319/lo.1975.20.1.0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001157476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.78.7.4444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002325378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00484570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003612065", 
          "https://doi.org/10.1007/bf00484570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00484570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003612065", 
          "https://doi.org/10.1007/bf00484570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.76.5.2354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012980011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.1402140302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013421978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.1402140302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013421978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.1402030309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014556339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.1402030309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014556339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.9.5385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018647883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00486143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023445281", 
          "https://doi.org/10.1007/bf00486143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00486143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023445281", 
          "https://doi.org/10.1007/bf00486143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00498971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028905642", 
          "https://doi.org/10.1007/bf00498971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00498971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028905642", 
          "https://doi.org/10.1007/bf00498971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8312.1980.tb00112.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031269877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/277240a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036459662", 
          "https://doi.org/10.1038/277240a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/o64-010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037030540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00484569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044540578", 
          "https://doi.org/10.1007/bf00484569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00484569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044540578", 
          "https://doi.org/10.1007/bf00484569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081957301", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1976.tb00878.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085737261"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-08", 
    "datePublishedReg": "1982-08-01", 
    "description": "Biochemical differences have been described among allozymes1\u20134, but the physiological consequences (that is, physiological phenotypes) of such differences have only rarely been demonstrated5\u20137. Such a relationship is necessary both to the argument that natural selection maintains allozymic diversity in natural populations and for understanding biochemical mechanisms of adaptation8. We report here a genotype-dependent difference in the rate of cellular free amino acid accumulation during adjustment to hyperosmotic conditions in the mussel Mytilus edulis. The product of the Lap locus in M. edulis is the lysosomal enzyme aminopeptidase-I (AM-I; E.C.3.4.11.-) which hydrolyses oligopeptides to their constituent amino acids9. Total AM-I activity is positively correlated with salinity; a 120% increase in salinity increases AM-I activity twofold10\u201313. Adjustment to hyperosmotic stress in osmoconforming marine bivalves, including M. edulis, involves rapid accumulation of cellular free amino acids14,15. The biochemical properties of AM-I, and its activation by salinity changes, suggest that it is important for providing cellular free amino acid pools during adjustment to hyperosmotic stress11. We show that individuals carrying the allele for high catalytic efficiency (kcat) accumulated cellular amino acids more rapidly than other genotypes. The difference in accumulation rate was also demonstrated by an interruption of hyperosmotic adjustment, which resulted in genotype-dependent rates of amino acid excretion. These results demonstrate the role of AM-I in the physiological processes that regulate cell volume. Thus, differing catalytic properties of allozymes are manifested as phenotypic differences at the physiological level and provide a mechanism for the known selective mortality of mussels in natural populations7.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/298688a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5875", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "298"
      }
    ], 
    "name": "Effect of an allozyme polymorphism on regulation of cell volume", 
    "pagination": "688", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e2f6934bbdfcf3b2d95a417a1616ab52a6e6b20026b6a4321f15ced32521cb3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7099266"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/298688a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006337154"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/298688a0", 
      "https://app.dimensions.ai/details/publication/pub.1006337154"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/298688a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/298688a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/298688a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/298688a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/298688a0'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      50 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/298688a0 schema:about N08b0c04a6303490caa97a089604bbd9b
2 N25f32710c5f244f88ef65c788654f187
3 N424771320fce432cba6629e9328d8c91
4 N907c110b85ec4dfe91c8b48763716a6d
5 Nb2e6b93a5a5442109171fbd75946e62c
6 Nc0fbeb0337e84d59b5974ce05ee49273
7 anzsrc-for:06
8 anzsrc-for:0606
9 schema:author N7bca576f4a9e46179519131f46d32e94
10 schema:citation sg:pub.10.1007/bf00484569
11 sg:pub.10.1007/bf00484570
12 sg:pub.10.1007/bf00486143
13 sg:pub.10.1007/bf00498971
14 sg:pub.10.1038/277240a0
15 https://app.dimensions.ai/details/publication/pub.1081957301
16 https://doi.org/10.1002/jez.1402030309
17 https://doi.org/10.1002/jez.1402140302
18 https://doi.org/10.1073/pnas.76.5.2354
19 https://doi.org/10.1073/pnas.77.9.5385
20 https://doi.org/10.1073/pnas.78.7.4444
21 https://doi.org/10.1111/j.1095-8312.1980.tb00112.x
22 https://doi.org/10.1111/j.1558-5646.1976.tb00878.x
23 https://doi.org/10.1139/o64-010
24 https://doi.org/10.4319/lo.1975.20.1.0020
25 schema:datePublished 1982-08
26 schema:datePublishedReg 1982-08-01
27 schema:description Biochemical differences have been described among allozymes1–4, but the physiological consequences (that is, physiological phenotypes) of such differences have only rarely been demonstrated5–7. Such a relationship is necessary both to the argument that natural selection maintains allozymic diversity in natural populations and for understanding biochemical mechanisms of adaptation8. We report here a genotype-dependent difference in the rate of cellular free amino acid accumulation during adjustment to hyperosmotic conditions in the mussel Mytilus edulis. The product of the Lap locus in M. edulis is the lysosomal enzyme aminopeptidase-I (AM-I; E.C.3.4.11.-) which hydrolyses oligopeptides to their constituent amino acids9. Total AM-I activity is positively correlated with salinity; a 120% increase in salinity increases AM-I activity twofold10–13. Adjustment to hyperosmotic stress in osmoconforming marine bivalves, including M. edulis, involves rapid accumulation of cellular free amino acids14,15. The biochemical properties of AM-I, and its activation by salinity changes, suggest that it is important for providing cellular free amino acid pools during adjustment to hyperosmotic stress11. We show that individuals carrying the allele for high catalytic efficiency (kcat) accumulated cellular amino acids more rapidly than other genotypes. The difference in accumulation rate was also demonstrated by an interruption of hyperosmotic adjustment, which resulted in genotype-dependent rates of amino acid excretion. These results demonstrate the role of AM-I in the physiological processes that regulate cell volume. Thus, differing catalytic properties of allozymes are manifested as phenotypic differences at the physiological level and provide a mechanism for the known selective mortality of mussels in natural populations7.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N32d7325c99454ea295d37a7f15db9dd0
32 N7c853a58a73c44d492f0c728adb1e398
33 sg:journal.1018957
34 schema:name Effect of an allozyme polymorphism on regulation of cell volume
35 schema:pagination 688
36 schema:productId N64742a80c30d459e8af596b61cc4273f
37 N6ddd33bd2224423ea2ac4364e9f26523
38 N8c0bbff156d44e398d078cbd58ee42a4
39 Na3e8d02431c842d2908398c72babd7bd
40 Nb62ed76b09804d35888035756d91bebe
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006337154
42 https://doi.org/10.1038/298688a0
43 schema:sdDatePublished 2019-04-10T19:45
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N70d00749c52044e696dcc99ea73a5323
46 schema:url https://www.nature.com/articles/298688a0
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N08b0c04a6303490caa97a089604bbd9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Water-Electrolyte Balance
52 rdf:type schema:DefinedTerm
53 N25f32710c5f244f88ef65c788654f187 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Polymorphism, Genetic
55 rdf:type schema:DefinedTerm
56 N32d7325c99454ea295d37a7f15db9dd0 schema:issueNumber 5875
57 rdf:type schema:PublicationIssue
58 N3365c0ef0b7046d78622c475da8fe590 rdf:first sg:person.01043323060.75
59 rdf:rest rdf:nil
60 N424771320fce432cba6629e9328d8c91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Aminopeptidases
62 rdf:type schema:DefinedTerm
63 N64742a80c30d459e8af596b61cc4273f schema:name doi
64 schema:value 10.1038/298688a0
65 rdf:type schema:PropertyValue
66 N6ddd33bd2224423ea2ac4364e9f26523 schema:name readcube_id
67 schema:value 1e2f6934bbdfcf3b2d95a417a1616ab52a6e6b20026b6a4321f15ced32521cb3
68 rdf:type schema:PropertyValue
69 N70d00749c52044e696dcc99ea73a5323 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N7bca576f4a9e46179519131f46d32e94 rdf:first sg:person.01322332732.16
72 rdf:rest Nde77edc521c7430ca441abea6ffb866c
73 N7c853a58a73c44d492f0c728adb1e398 schema:volumeNumber 298
74 rdf:type schema:PublicationVolume
75 N8c0bbff156d44e398d078cbd58ee42a4 schema:name dimensions_id
76 schema:value pub.1006337154
77 rdf:type schema:PropertyValue
78 N907c110b85ec4dfe91c8b48763716a6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Bivalvia
80 rdf:type schema:DefinedTerm
81 Na3e8d02431c842d2908398c72babd7bd schema:name nlm_unique_id
82 schema:value 0410462
83 rdf:type schema:PropertyValue
84 Nb2e6b93a5a5442109171fbd75946e62c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Erythrocyte Indices
86 rdf:type schema:DefinedTerm
87 Nb62ed76b09804d35888035756d91bebe schema:name pubmed_id
88 schema:value 7099266
89 rdf:type schema:PropertyValue
90 Nc0fbeb0337e84d59b5974ce05ee49273 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Alleles
92 rdf:type schema:DefinedTerm
93 Nde77edc521c7430ca441abea6ffb866c rdf:first sg:person.01212744674.18
94 rdf:rest N3365c0ef0b7046d78622c475da8fe590
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0606 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physiology
100 rdf:type schema:DefinedTerm
101 sg:journal.1018957 schema:issn 0090-0028
102 1476-4687
103 schema:name Nature
104 rdf:type schema:Periodical
105 sg:person.01043323060.75 schema:familyName Koehn
106 schema:givenName Richard K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043323060.75
108 rdf:type schema:Person
109 sg:person.01212744674.18 schema:familyName Deaton
110 schema:givenName Lewis E.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212744674.18
112 rdf:type schema:Person
113 sg:person.01322332732.16 schema:familyName Hilbish
114 schema:givenName Thomas J.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322332732.16
116 rdf:type schema:Person
117 sg:pub.10.1007/bf00484569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044540578
118 https://doi.org/10.1007/bf00484569
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00484570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003612065
121 https://doi.org/10.1007/bf00484570
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf00486143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023445281
124 https://doi.org/10.1007/bf00486143
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf00498971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028905642
127 https://doi.org/10.1007/bf00498971
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/277240a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036459662
130 https://doi.org/10.1038/277240a0
131 rdf:type schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1081957301 schema:CreativeWork
133 https://doi.org/10.1002/jez.1402030309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014556339
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/jez.1402140302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013421978
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.76.5.2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012980011
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1073/pnas.77.9.5385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018647883
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.78.7.4444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002325378
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1111/j.1095-8312.1980.tb00112.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031269877
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1111/j.1558-5646.1976.tb00878.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085737261
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1139/o64-010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037030540
148 rdf:type schema:CreativeWork
149 https://doi.org/10.4319/lo.1975.20.1.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001157476
150 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...