Microdomains of GPI-anchored proteins in living cells revealed by crosslinking View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-08

AUTHORS

Tim Friedrichson, Teymuras V. Kurzchalia

ABSTRACT

There is some discussion as to whether glycosyl-phosphatidylinositol(GPI)-anchored proteins occur in microdomains in the cell membrane1,2. These putative microdomains have been implicated in processes such as sorting in polarized cells3,4,5 and signal transduction6,7,8. Complexes enriched in GPI-anchored proteins, cholesterol and glycosphingolipids have been isolated from cell membranes by using non-ionic detergents: these complexes were thought to represent a clustered arrangement of GPI-anchored proteins9,10. However, results obtained when clustering of GPI-anchored proteins induced by antibodies or by detergents was prevented support the idea of a dispersed surface distribution of GPI-anchored proteins at steady state11,12,13. Here we use chemical crosslinking to show that membrane microdomains of a GPI-anchored protein exist at the surface in living cells. This clustering is specific for the GPI-anchored form, as two transmembrane forms bearing the same ectodomain do not form oligomers. Depletion of membrane cholesterol causes the clustering of GPI-anchored proteins to break up, whereas treatment of cells with detergent substantially increases the size of the complexes. We find that in living cells these GPI-anchored proteins reside in microdomains consisting of at least 15 molecules, which are much smaller than those seen after detergent extraction. More... »

PAGES

802-805

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/29570

DOI

http://dx.doi.org/10.1038/29570

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030489269

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9723622


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CD55 Antigens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CHO Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cloning, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cricetinae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Linking Reagents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Detergents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycosylphosphatidylinositols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Growth Hormone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, Max Delbr\u00fcck Centre for Molecular Medicine, Robert-R\u00f6ssle-Strasse 10, 13125, Berlin-Buch, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419491.0", 
          "name": [
            "Department of Cell Biology, Max Delbr\u00fcck Centre for Molecular Medicine, Robert-R\u00f6ssle-Strasse 10, 13125, Berlin-Buch, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Friedrichson", 
        "givenName": "Tim", 
        "id": "sg:person.0701615756.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701615756.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, Max Delbr\u00fcck Centre for Molecular Medicine, Robert-R\u00f6ssle-Strasse 10, 13125, Berlin-Buch, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419491.0", 
          "name": [
            "Department of Cell Biology, Max Delbr\u00fcck Centre for Molecular Medicine, Robert-R\u00f6ssle-Strasse 10, 13125, Berlin-Buch, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurzchalia", 
        "givenName": "Teymuras V.", 
        "id": "sg:person.01214657040.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214657040.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/378096a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030224435", 
          "https://doi.org/10.1038/378096a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002329900277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036102352", 
          "https://doi.org/10.1007/s002329900277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025389798", 
          "https://doi.org/10.1038/29563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/42408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040731787", 
          "https://doi.org/10.1038/42408"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-08", 
    "datePublishedReg": "1998-08-01", 
    "description": "There is some discussion as to whether glycosyl-phosphatidylinositol(GPI)-anchored proteins occur in microdomains in the cell membrane1,2. These putative microdomains have been implicated in processes such as sorting in polarized cells3,4,5 and signal transduction6,7,8. Complexes enriched in GPI-anchored proteins, cholesterol and glycosphingolipids have been isolated from cell membranes by using non-ionic detergents: these complexes were thought to represent a clustered arrangement of GPI-anchored proteins9,10. However, results obtained when clustering of GPI-anchored proteins induced by antibodies or by detergents was prevented support the idea of a dispersed surface distribution of GPI-anchored proteins at steady state11,12,13. Here we use chemical crosslinking to show that membrane microdomains of a GPI-anchored protein exist at the surface in living cells. This clustering is specific for the GPI-anchored form, as two transmembrane forms bearing the same ectodomain do not form oligomers. Depletion of membrane cholesterol causes the clustering of GPI-anchored proteins to break up, whereas treatment of cells with detergent substantially increases the size of the complexes. We find that in living cells these GPI-anchored proteins reside in microdomains consisting of at least 15 molecules, which are much smaller than those seen after detergent extraction.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/29570", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6695", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "394"
      }
    ], 
    "keywords": [
      "treatment of cells", 
      "membrane microdomains", 
      "transmembrane form", 
      "non-ionic detergent", 
      "membrane cholesterol", 
      "detergent extraction", 
      "living cells", 
      "GPI", 
      "microdomains", 
      "protein", 
      "cell membrane", 
      "same ectodomain", 
      "cells", 
      "detergents", 
      "chemical crosslinking", 
      "complexes", 
      "ectodomain", 
      "glycosphingolipids", 
      "surface distribution", 
      "glycosyl", 
      "membrane", 
      "depletion", 
      "molecules", 
      "oligomers", 
      "clustering", 
      "form", 
      "antibodies", 
      "signals", 
      "cholesterol", 
      "crosslinking", 
      "distribution", 
      "process", 
      "size", 
      "arrangement", 
      "results", 
      "treatment", 
      "surface", 
      "extraction", 
      "support", 
      "idea", 
      "discussion", 
      "putative microdomains", 
      "arrangement of GPI", 
      "clustering of GPI", 
      "Microdomains of GPI"
    ], 
    "name": "Microdomains of GPI-anchored proteins in living cells revealed by crosslinking", 
    "pagination": "802-805", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030489269"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/29570"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9723622"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/29570", 
      "https://app.dimensions.ai/details/publication/pub.1030489269"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_305.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/29570"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/29570'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/29570'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/29570'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/29570'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      22 PREDICATES      88 URIs      76 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/29570 schema:about N07bf5c166f724145a96a976b7e2cbf98
2 N0aeb99b9b3d248c7bb7cc7220dbfe61c
3 N14fdab75d65845dfaf1ba7fe79734821
4 N3bd19d15f560409ab5d852f069eb86b3
5 N45edf7c8b01648b4a2a7f4761f6a15a0
6 N515de3987810455b9f5a3400990e5fd5
7 N53a5fc51c1d043cd8cbb06bb10002f28
8 Nc4f7eccb135642a3b225898a572afdb9
9 Nc5e7c50d2f3444cd9e745e936d91ba7f
10 Nd31387dce2b3416b971e691b6cb5831e
11 Nd5b0f90970d84898a0cb4bc6e0519966
12 Ne455efb428154576b60ab7a23110556c
13 anzsrc-for:06
14 anzsrc-for:0601
15 schema:author N0a6106d234aa4a7491805cc3f6c21fe2
16 schema:citation sg:pub.10.1007/s002329900277
17 sg:pub.10.1038/29563
18 sg:pub.10.1038/378096a0
19 sg:pub.10.1038/42408
20 schema:datePublished 1998-08
21 schema:datePublishedReg 1998-08-01
22 schema:description There is some discussion as to whether glycosyl-phosphatidylinositol(GPI)-anchored proteins occur in microdomains in the cell membrane1,2. These putative microdomains have been implicated in processes such as sorting in polarized cells3,4,5 and signal transduction6,7,8. Complexes enriched in GPI-anchored proteins, cholesterol and glycosphingolipids have been isolated from cell membranes by using non-ionic detergents: these complexes were thought to represent a clustered arrangement of GPI-anchored proteins9,10. However, results obtained when clustering of GPI-anchored proteins induced by antibodies or by detergents was prevented support the idea of a dispersed surface distribution of GPI-anchored proteins at steady state11,12,13. Here we use chemical crosslinking to show that membrane microdomains of a GPI-anchored protein exist at the surface in living cells. This clustering is specific for the GPI-anchored form, as two transmembrane forms bearing the same ectodomain do not form oligomers. Depletion of membrane cholesterol causes the clustering of GPI-anchored proteins to break up, whereas treatment of cells with detergent substantially increases the size of the complexes. We find that in living cells these GPI-anchored proteins reside in microdomains consisting of at least 15 molecules, which are much smaller than those seen after detergent extraction.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N85624286ffd246c081b361badef8d93f
27 Ne3a7f0396fea4291a7b0c6914a9a90fc
28 sg:journal.1018957
29 schema:keywords GPI
30 Microdomains of GPI
31 antibodies
32 arrangement
33 arrangement of GPI
34 cell membrane
35 cells
36 chemical crosslinking
37 cholesterol
38 clustering
39 clustering of GPI
40 complexes
41 crosslinking
42 depletion
43 detergent extraction
44 detergents
45 discussion
46 distribution
47 ectodomain
48 extraction
49 form
50 glycosphingolipids
51 glycosyl
52 idea
53 living cells
54 membrane
55 membrane cholesterol
56 membrane microdomains
57 microdomains
58 molecules
59 non-ionic detergent
60 oligomers
61 process
62 protein
63 putative microdomains
64 results
65 same ectodomain
66 signals
67 size
68 support
69 surface
70 surface distribution
71 transmembrane form
72 treatment
73 treatment of cells
74 schema:name Microdomains of GPI-anchored proteins in living cells revealed by crosslinking
75 schema:pagination 802-805
76 schema:productId N04b53e248a2247d1aee523ba5b38453d
77 N232f332747bc49278415603307cd0dc6
78 N7afa0a2de64c41e5ab8520bbed29b5d8
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030489269
80 https://doi.org/10.1038/29570
81 schema:sdDatePublished 2021-12-01T19:11
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N32e3e7ef088e4731aee1c21563bf47fb
84 schema:url https://doi.org/10.1038/29570
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N04b53e248a2247d1aee523ba5b38453d schema:name dimensions_id
89 schema:value pub.1030489269
90 rdf:type schema:PropertyValue
91 N07bf5c166f724145a96a976b7e2cbf98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Cross-Linking Reagents
93 rdf:type schema:DefinedTerm
94 N0a6106d234aa4a7491805cc3f6c21fe2 rdf:first sg:person.0701615756.35
95 rdf:rest N72d3d66dd0ba425fb2240e3e755d21fd
96 N0aeb99b9b3d248c7bb7cc7220dbfe61c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Rats
98 rdf:type schema:DefinedTerm
99 N14fdab75d65845dfaf1ba7fe79734821 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Growth Hormone
101 rdf:type schema:DefinedTerm
102 N232f332747bc49278415603307cd0dc6 schema:name pubmed_id
103 schema:value 9723622
104 rdf:type schema:PropertyValue
105 N32e3e7ef088e4731aee1c21563bf47fb schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N3bd19d15f560409ab5d852f069eb86b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name CD55 Antigens
109 rdf:type schema:DefinedTerm
110 N45edf7c8b01648b4a2a7f4761f6a15a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Cell Line
112 rdf:type schema:DefinedTerm
113 N515de3987810455b9f5a3400990e5fd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Cricetinae
115 rdf:type schema:DefinedTerm
116 N53a5fc51c1d043cd8cbb06bb10002f28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Cell Membrane
118 rdf:type schema:DefinedTerm
119 N72d3d66dd0ba425fb2240e3e755d21fd rdf:first sg:person.01214657040.83
120 rdf:rest rdf:nil
121 N7afa0a2de64c41e5ab8520bbed29b5d8 schema:name doi
122 schema:value 10.1038/29570
123 rdf:type schema:PropertyValue
124 N85624286ffd246c081b361badef8d93f schema:volumeNumber 394
125 rdf:type schema:PublicationVolume
126 Nc4f7eccb135642a3b225898a572afdb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Detergents
128 rdf:type schema:DefinedTerm
129 Nc5e7c50d2f3444cd9e745e936d91ba7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Animals
131 rdf:type schema:DefinedTerm
132 Nd31387dce2b3416b971e691b6cb5831e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cloning, Molecular
134 rdf:type schema:DefinedTerm
135 Nd5b0f90970d84898a0cb4bc6e0519966 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Glycosylphosphatidylinositols
137 rdf:type schema:DefinedTerm
138 Ne3a7f0396fea4291a7b0c6914a9a90fc schema:issueNumber 6695
139 rdf:type schema:PublicationIssue
140 Ne455efb428154576b60ab7a23110556c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name CHO Cells
142 rdf:type schema:DefinedTerm
143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biological Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
147 schema:name Biochemistry and Cell Biology
148 rdf:type schema:DefinedTerm
149 sg:journal.1018957 schema:issn 0028-0836
150 1476-4687
151 schema:name Nature
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01214657040.83 schema:affiliation grid-institutes:grid.419491.0
155 schema:familyName Kurzchalia
156 schema:givenName Teymuras V.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214657040.83
158 rdf:type schema:Person
159 sg:person.0701615756.35 schema:affiliation grid-institutes:grid.419491.0
160 schema:familyName Friedrichson
161 schema:givenName Tim
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701615756.35
163 rdf:type schema:Person
164 sg:pub.10.1007/s002329900277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036102352
165 https://doi.org/10.1007/s002329900277
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/29563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025389798
168 https://doi.org/10.1038/29563
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/378096a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030224435
171 https://doi.org/10.1038/378096a0
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/42408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040731787
174 https://doi.org/10.1038/42408
175 rdf:type schema:CreativeWork
176 grid-institutes:grid.419491.0 schema:alternateName Department of Cell Biology, Max Delbrück Centre for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin-Buch, Germany
177 schema:name Department of Cell Biology, Max Delbrück Centre for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin-Buch, Germany
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...