Regulation of epithelial tight junction permeability by cyclic AMP View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-12

AUTHORS

Michael E. Duffey, B. Hainau, Shu Ho, Carl J. Bentzel

ABSTRACT

In ‘leaky‘ epithelia, ions move through both a transcellular and a paracellular (serial alignment of tight junction and intercellular space) path. The efficiency of transepithelial transport could therefore be regulated if the cell was able to alter reversibly the permeability of tight junctions. (These are specialized regions of the apical cell membranes common to all epithelia.) We now report that such a mechanism indeed exists in the Necturus gallbladder. It is effected by cyclic AMP, which is already known to mediate surface membrane phenomena in a variety of cell systems through its interaction with the cytoskeletal system1,2. In gallbladders mounted and perfused with electrolyte solutions in an Ussing-type chamber, exposure of the mucosal surface to cyclic AMP analogues increased transepithelial electrical resistance, potential difference and short-circuit current and decreased NaCl dilution potentials in a rapid and reversible manner. We also observed rapid depolarization of cell membrane electrical potentials and a slow decline in intracellular K+ activity. Freeze-fracture electron microscopy of tissues fixed with glutaraldehyde during the peak electrical response showed a reorientation of intramembranous junctional fibrils, suggesting that cyclic AMP reduces the ionic permeability of the paracellular pathway in this epithelium by altering the structure of tight junctions. More... »

PAGES

451-453

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/294451a0

DOI

http://dx.doi.org/10.1038/294451a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045974926

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6273740


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "8-Bromo Cyclic Adenosine Monophosphate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane Permeability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cyclic AMP", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epithelium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gallbladder", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intercellular Junctions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Necturus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Permeability", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.413122.7", 
          "name": [
            "Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duffey", 
        "givenName": "Michael E.", 
        "id": "sg:person.01152441405.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152441405.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.413122.7", 
          "name": [
            "Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hainau", 
        "givenName": "B.", 
        "id": "sg:person.010706747654.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010706747654.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.413122.7", 
          "name": [
            "Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ho", 
        "givenName": "Shu", 
        "id": "sg:person.01266670005.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266670005.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.413122.7", 
          "name": [
            "Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bentzel", 
        "givenName": "Carl J.", 
        "id": "sg:person.01173542743.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173542743.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01869524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039686263", 
          "https://doi.org/10.1007/bf01869524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01868571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014072782", 
          "https://doi.org/10.1007/bf01868571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01870360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023424197", 
          "https://doi.org/10.1007/bf01870360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01873340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052552771", 
          "https://doi.org/10.1007/bf01873340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01869743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043493757", 
          "https://doi.org/10.1007/bf01869743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01868106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046512517", 
          "https://doi.org/10.1007/bf01868106"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-12", 
    "datePublishedReg": "1981-12-01", 
    "description": "In \u2018leaky\u2018 epithelia, ions move through both a transcellular and a paracellular (serial alignment of tight junction and intercellular space) path. The efficiency of transepithelial transport could therefore be regulated if the cell was able to alter reversibly the permeability of tight junctions. (These are specialized regions of the apical cell membranes common to all epithelia.) We now report that such a mechanism indeed exists in the Necturus gallbladder. It is effected by cyclic AMP, which is already known to mediate surface membrane phenomena in a variety of cell systems through its interaction with the cytoskeletal system1,2. In gallbladders mounted and perfused with electrolyte solutions in an Ussing-type chamber, exposure of the mucosal surface to cyclic AMP analogues increased transepithelial electrical resistance, potential difference and short-circuit current and decreased NaCl dilution potentials in a rapid and reversible manner. We also observed rapid depolarization of cell membrane electrical potentials and a slow decline in intracellular K+ activity. Freeze-fracture electron microscopy of tissues fixed with glutaraldehyde during the peak electrical response showed a reorientation of intramembranous junctional fibrils, suggesting that cyclic AMP reduces the ionic permeability of the paracellular pathway in this epithelium by altering the structure of tight junctions.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/294451a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5840", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "294"
      }
    ], 
    "keywords": [
      "short-circuit current", 
      "electrical resistance", 
      "electrical response", 
      "electron microscopy", 
      "electrical potential", 
      "electrolyte solution", 
      "permeability", 
      "cell system", 
      "dilution potential", 
      "current", 
      "surface", 
      "potential difference", 
      "efficiency", 
      "microscopy", 
      "junction", 
      "chamber", 
      "transport", 
      "solution", 
      "resistance", 
      "potential", 
      "structure", 
      "path", 
      "phenomenon", 
      "system", 
      "ions", 
      "glutaraldehyde", 
      "reorientation", 
      "mechanism", 
      "membrane phenomena", 
      "ionic permeability", 
      "interaction", 
      "reversible manner", 
      "freeze-fracture electron microscopy", 
      "fibrils", 
      "variety", 
      "Necturus gallbladder", 
      "manner", 
      "response", 
      "cells", 
      "differences", 
      "analogues", 
      "junctional fibrils", 
      "exposure", 
      "tissue", 
      "slow decline", 
      "activity", 
      "membrane electrical potential", 
      "regulation", 
      "decline", 
      "rapid depolarization", 
      "depolarization", 
      "pathway", 
      "transepithelial transport", 
      "transepithelial electrical resistance", 
      "Ussing-type chambers", 
      "mucosal surfaces", 
      "paracellular pathway", 
      "AMP", 
      "tight junctions", 
      "cyclic AMP", 
      "cell membrane electrical potential", 
      "paracellular path", 
      "cyclic AMP analogue", 
      "tight junction permeability", 
      "transcellular", 
      "cytoskeletal", 
      "AMP analogue", 
      "NaCl dilution potentials", 
      "epithelial tight junction permeability", 
      "junction permeability", 
      "epithelium", 
      "gallbladder", 
      "intracellular"
    ], 
    "name": "Regulation of epithelial tight junction permeability by cyclic AMP", 
    "pagination": "451-453", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045974926"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/294451a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6273740"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/294451a0", 
      "https://app.dimensions.ai/details/publication/pub.1045974926"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_170.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/294451a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/294451a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/294451a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/294451a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/294451a0'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      116 URIs      102 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/294451a0 schema:about N23e37e929bf241a7976723826fde7615
2 N489d2dc975e74795b845a85b617883b6
3 N655555a02064466486627b62adf9f687
4 N6d25f70cd69541069d5888ed76c60b14
5 N739ce5867f874ee998f8a5a282d53e36
6 N8ab3d34398014676907bb01ca43044ab
7 Na640bd742eb64833b2999f72c9446778
8 Nba59edfa1195412e962a077d1ab80fe0
9 Nbee4b3ffca71441b90c7fd2012124739
10 Nf7b472faa33947fb907044405d608390
11 Nfba824f88a0f4e36bccedd276e0caa64
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Nabc0c52b27c743c7856e0c600418f6d3
15 schema:citation sg:pub.10.1007/bf01868106
16 sg:pub.10.1007/bf01868571
17 sg:pub.10.1007/bf01869524
18 sg:pub.10.1007/bf01869743
19 sg:pub.10.1007/bf01870360
20 sg:pub.10.1007/bf01873340
21 schema:datePublished 1981-12
22 schema:datePublishedReg 1981-12-01
23 schema:description In ‘leaky‘ epithelia, ions move through both a transcellular and a paracellular (serial alignment of tight junction and intercellular space) path. The efficiency of transepithelial transport could therefore be regulated if the cell was able to alter reversibly the permeability of tight junctions. (These are specialized regions of the apical cell membranes common to all epithelia.) We now report that such a mechanism indeed exists in the Necturus gallbladder. It is effected by cyclic AMP, which is already known to mediate surface membrane phenomena in a variety of cell systems through its interaction with the cytoskeletal system1,2. In gallbladders mounted and perfused with electrolyte solutions in an Ussing-type chamber, exposure of the mucosal surface to cyclic AMP analogues increased transepithelial electrical resistance, potential difference and short-circuit current and decreased NaCl dilution potentials in a rapid and reversible manner. We also observed rapid depolarization of cell membrane electrical potentials and a slow decline in intracellular K+ activity. Freeze-fracture electron microscopy of tissues fixed with glutaraldehyde during the peak electrical response showed a reorientation of intramembranous junctional fibrils, suggesting that cyclic AMP reduces the ionic permeability of the paracellular pathway in this epithelium by altering the structure of tight junctions.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N2080535ae3b544d68090632b0537b163
27 N2f82cd29d40b4704836a0dab25010a89
28 sg:journal.1018957
29 schema:keywords AMP
30 AMP analogue
31 NaCl dilution potentials
32 Necturus gallbladder
33 Ussing-type chambers
34 activity
35 analogues
36 cell membrane electrical potential
37 cell system
38 cells
39 chamber
40 current
41 cyclic AMP
42 cyclic AMP analogue
43 cytoskeletal
44 decline
45 depolarization
46 differences
47 dilution potential
48 efficiency
49 electrical potential
50 electrical resistance
51 electrical response
52 electrolyte solution
53 electron microscopy
54 epithelial tight junction permeability
55 epithelium
56 exposure
57 fibrils
58 freeze-fracture electron microscopy
59 gallbladder
60 glutaraldehyde
61 interaction
62 intracellular
63 ionic permeability
64 ions
65 junction
66 junction permeability
67 junctional fibrils
68 manner
69 mechanism
70 membrane electrical potential
71 membrane phenomena
72 microscopy
73 mucosal surfaces
74 paracellular path
75 paracellular pathway
76 path
77 pathway
78 permeability
79 phenomenon
80 potential
81 potential difference
82 rapid depolarization
83 regulation
84 reorientation
85 resistance
86 response
87 reversible manner
88 short-circuit current
89 slow decline
90 solution
91 structure
92 surface
93 system
94 tight junction permeability
95 tight junctions
96 tissue
97 transcellular
98 transepithelial electrical resistance
99 transepithelial transport
100 transport
101 variety
102 schema:name Regulation of epithelial tight junction permeability by cyclic AMP
103 schema:pagination 451-453
104 schema:productId N8464b8364eec448cb455dd9e7f15e71a
105 N85e5d334a9dc4b1f90837fe72305cea1
106 Nd0525dd1f56c425d98097ea147a9984c
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045974926
108 https://doi.org/10.1038/294451a0
109 schema:sdDatePublished 2022-12-01T06:18
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher Nf9f57facddc34e9c95d8eb7b7e94563a
112 schema:url https://doi.org/10.1038/294451a0
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N158766d4de9d4362900c5d03701352d2 rdf:first sg:person.01266670005.71
117 rdf:rest N6ac0d96dd1c14f839c8743450b509ba6
118 N2080535ae3b544d68090632b0537b163 schema:volumeNumber 294
119 rdf:type schema:PublicationVolume
120 N23e37e929bf241a7976723826fde7615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Membrane Potentials
122 rdf:type schema:DefinedTerm
123 N2f82cd29d40b4704836a0dab25010a89 schema:issueNumber 5840
124 rdf:type schema:PublicationIssue
125 N3ad874f00f48444a946300ec639d2b6b rdf:first sg:person.010706747654.05
126 rdf:rest N158766d4de9d4362900c5d03701352d2
127 N489d2dc975e74795b845a85b617883b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Permeability
129 rdf:type schema:DefinedTerm
130 N655555a02064466486627b62adf9f687 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name 8-Bromo Cyclic Adenosine Monophosphate
132 rdf:type schema:DefinedTerm
133 N6ac0d96dd1c14f839c8743450b509ba6 rdf:first sg:person.01173542743.88
134 rdf:rest rdf:nil
135 N6d25f70cd69541069d5888ed76c60b14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Gallbladder
137 rdf:type schema:DefinedTerm
138 N739ce5867f874ee998f8a5a282d53e36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Necturus
140 rdf:type schema:DefinedTerm
141 N8464b8364eec448cb455dd9e7f15e71a schema:name dimensions_id
142 schema:value pub.1045974926
143 rdf:type schema:PropertyValue
144 N85e5d334a9dc4b1f90837fe72305cea1 schema:name doi
145 schema:value 10.1038/294451a0
146 rdf:type schema:PropertyValue
147 N8ab3d34398014676907bb01ca43044ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Intercellular Junctions
149 rdf:type schema:DefinedTerm
150 Na640bd742eb64833b2999f72c9446778 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Epithelium
152 rdf:type schema:DefinedTerm
153 Nabc0c52b27c743c7856e0c600418f6d3 rdf:first sg:person.01152441405.25
154 rdf:rest N3ad874f00f48444a946300ec639d2b6b
155 Nba59edfa1195412e962a077d1ab80fe0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name In Vitro Techniques
157 rdf:type schema:DefinedTerm
158 Nbee4b3ffca71441b90c7fd2012124739 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Animals
160 rdf:type schema:DefinedTerm
161 Nd0525dd1f56c425d98097ea147a9984c schema:name pubmed_id
162 schema:value 6273740
163 rdf:type schema:PropertyValue
164 Nf7b472faa33947fb907044405d608390 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Cell Membrane Permeability
166 rdf:type schema:DefinedTerm
167 Nf9f57facddc34e9c95d8eb7b7e94563a schema:name Springer Nature - SN SciGraph project
168 rdf:type schema:Organization
169 Nfba824f88a0f4e36bccedd276e0caa64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Cyclic AMP
171 rdf:type schema:DefinedTerm
172 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
173 schema:name Biological Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
176 schema:name Biochemistry and Cell Biology
177 rdf:type schema:DefinedTerm
178 sg:journal.1018957 schema:issn 0028-0836
179 1476-4687
180 schema:name Nature
181 schema:publisher Springer Nature
182 rdf:type schema:Periodical
183 sg:person.010706747654.05 schema:affiliation grid-institutes:grid.413122.7
184 schema:familyName Hainau
185 schema:givenName B.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010706747654.05
187 rdf:type schema:Person
188 sg:person.01152441405.25 schema:affiliation grid-institutes:grid.413122.7
189 schema:familyName Duffey
190 schema:givenName Michael E.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152441405.25
192 rdf:type schema:Person
193 sg:person.01173542743.88 schema:affiliation grid-institutes:grid.413122.7
194 schema:familyName Bentzel
195 schema:givenName Carl J.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173542743.88
197 rdf:type schema:Person
198 sg:person.01266670005.71 schema:affiliation grid-institutes:grid.413122.7
199 schema:familyName Ho
200 schema:givenName Shu
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266670005.71
202 rdf:type schema:Person
203 sg:pub.10.1007/bf01868106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046512517
204 https://doi.org/10.1007/bf01868106
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/bf01868571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014072782
207 https://doi.org/10.1007/bf01868571
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/bf01869524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039686263
210 https://doi.org/10.1007/bf01869524
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/bf01869743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043493757
213 https://doi.org/10.1007/bf01869743
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/bf01870360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023424197
216 https://doi.org/10.1007/bf01870360
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/bf01873340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052552771
219 https://doi.org/10.1007/bf01873340
220 rdf:type schema:CreativeWork
221 grid-institutes:grid.413122.7 schema:alternateName Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA
222 schema:name Departments of Physiology and Medicine, State University of New York at Buffalo and Buffalo Veterans Administration Medical Center, 14215, Buffalo, New York, USA
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...