Ontology type: schema:ScholarlyArticle
1981-05
AUTHORSBrigid L. M. Hogan, Amanda Taylor, Eileen Adamson
ABSTRACTF9 is a clonal line of mouse teratocarcinoma-derived embryonal carcinoma (EC) cells which shows very little spontaneous differentiation in vivo or in vitro1. Recently, however, it was reported2–6 that F9 monolayers treated with retinoic acid and dibutyryl cyclic AMP differentiate into an early embryonic cell type known as parietal endoderm, which is one of two distinct populations of extra-embryonic endoderm that differentiate in the normal mouse embryo shortly after implantation7,8. The other population is the visceral endoderm, and the two differ not only in their morphology and location within the embryo, but also in their biochemical properties9–12. Parietal endoderm cells, for example, do not synthesize α-fetoprotein13 (AFP), whereas visceral endoderm cells do13. There is evidence8 that during embryogenesis parietal and visceral endoderm are derived from a common precursor population known as the primary endoderm, and recent experiments with cultured mouse embryos14 suggest that the phenotype of these cells can be modulated by contact with different embryonic tissues. We now show that if F9 EC cultures are treated with retinoic acid when they are in the form of small aggregates, they differentiate on the outer surface cells which morphologically resemble visceral rather than parietal endoderm. In addition, the cells synthesize and secrete AFP, identified by immunoprecipitation and immunoperoxidase reactions using specific anti-AFP immunoglobulin. One interpretation of this result is that F9 cells treated with retinoic acid differentiate first into multipotent cells analogous to the primary endoderm of the normal embryo which then express either the mature parietal or visceral phenotype depending on the nature of the intercellular contact signals they receive. We therefore believe that F9 EC cells may be even more useful than previously supposed for biochemical studies on factors controlling gene expression during mammalian embryogenesis. More... »
PAGES235-237
http://scigraph.springernature.com/pub.10.1038/291235a0
DOIhttp://dx.doi.org/10.1038/291235a0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1023425892
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/6164928
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bucladesine",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Aggregation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Differentiation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Line",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Clone Cells",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Embryo, Mammalian",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mice",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Teratoma",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Tretinoin",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "alpha-Fetoproteins",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Imperial Cancer Research Fund, Mill Hill Laboratories, Burtonhole Lane, NW7 1AD, London, UK",
"id": "http://www.grid.ac/institutes/grid.11485.39",
"name": [
"Imperial Cancer Research Fund, Mill Hill Laboratories, Burtonhole Lane, NW7 1AD, London, UK"
],
"type": "Organization"
},
"familyName": "Hogan",
"givenName": "Brigid L. M.",
"id": "sg:person.010060100317.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060100317.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial Cancer Research Fund, Mill Hill Laboratories, Burtonhole Lane, NW7 1AD, London, UK",
"id": "http://www.grid.ac/institutes/grid.11485.39",
"name": [
"Imperial Cancer Research Fund, Mill Hill Laboratories, Burtonhole Lane, NW7 1AD, London, UK"
],
"type": "Organization"
},
"familyName": "Taylor",
"givenName": "Amanda",
"id": "sg:person.01306121143.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306121143.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Zoology, University of Oxford, South Parks Road, OX1 2JD, Oxford, UK",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"Department of Zoology, University of Oxford, South Parks Road, OX1 2JD, Oxford, UK"
],
"type": "Organization"
},
"familyName": "Adamson",
"givenName": "Eileen",
"id": "sg:person.01034452734.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034452734.65"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/227680a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010419937",
"https://doi.org/10.1038/227680a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00569266",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027503689",
"https://doi.org/10.1007/bf00569266"
],
"type": "CreativeWork"
}
],
"datePublished": "1981-05",
"datePublishedReg": "1981-05-01",
"description": "F9 is a clonal line of mouse teratocarcinoma-derived embryonal carcinoma (EC) cells which shows very little spontaneous differentiation in vivo or in vitro1. Recently, however, it was reported2\u20136 that F9 monolayers treated with retinoic acid and dibutyryl cyclic AMP differentiate into an early embryonic cell type known as parietal endoderm, which is one of two distinct populations of extra-embryonic endoderm that differentiate in the normal mouse embryo shortly after implantation7,8. The other population is the visceral endoderm, and the two differ not only in their morphology and location within the embryo, but also in their biochemical properties9\u201312. Parietal endoderm cells, for example, do not synthesize \u03b1-fetoprotein13 (AFP), whereas visceral endoderm cells do13. There is evidence8 that during embryogenesis parietal and visceral endoderm are derived from a common precursor population known as the primary endoderm, and recent experiments with cultured mouse embryos14 suggest that the phenotype of these cells can be modulated by contact with different embryonic tissues. We now show that if F9 EC cultures are treated with retinoic acid when they are in the form of small aggregates, they differentiate on the outer surface cells which morphologically resemble visceral rather than parietal endoderm. In addition, the cells synthesize and secrete AFP, identified by immunoprecipitation and immunoperoxidase reactions using specific anti-AFP immunoglobulin. One interpretation of this result is that F9 cells treated with retinoic acid differentiate first into multipotent cells analogous to the primary endoderm of the normal embryo which then express either the mature parietal or visceral phenotype depending on the nature of the intercellular contact signals they receive. We therefore believe that F9 EC cells may be even more useful than previously supposed for biochemical studies on factors controlling gene expression during mammalian embryogenesis.",
"genre": "article",
"id": "sg:pub.10.1038/291235a0",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5812",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "291"
}
],
"keywords": [
"visceral endoderm",
"primary endoderm",
"parietal endoderm",
"retinoic acid differentiate",
"embryonic cell types",
"different embryonic tissues",
"embryonal carcinoma cell differentiation",
"extra-embryonic endoderm",
"parietal endoderm cells",
"carcinoma cell differentiation",
"common precursor population",
"embryonal carcinoma cells",
"retinoic acid",
"mammalian embryogenesis",
"normal mouse embryos",
"F9 EC cells",
"endoderm cells",
"F9 cells",
"mouse embryos",
"gene expression",
"endoderm",
"embryonic tissues",
"spontaneous differentiation",
"multipotent cells",
"cell differentiation",
"cell types",
"biochemical studies",
"clonal lines",
"precursor population",
"distinct populations",
"acid differentiates",
"embryos",
"embryogenesis",
"normal embryos",
"EC cells",
"cell interactions",
"carcinoma cells",
"contact signals",
"phenotype",
"cells",
"EC cultures",
"differentiation",
"cyclic AMP",
"dibutyryl cyclic AMP",
"immunoprecipitation",
"surface cells",
"small aggregates",
"population",
"visceral phenotype",
"differentiates",
"acid",
"F9",
"expression",
"Vitro1",
"vivo",
"tissue",
"AMP",
"lines",
"interaction",
"recent experiments",
"culture",
"aggregates",
"morphology",
"signals",
"addition",
"factors",
"monolayers",
"types",
"form",
"location",
"experiments",
"immunoglobulin",
"study",
"contact",
"immunoperoxidase reaction",
"nature",
"results",
"reaction",
"AFP",
"example",
"interpretation"
],
"name": "Cell interactions modulate embryonal carcinoma cell differentiation into parietal or visceral endoderm",
"pagination": "235-237",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1023425892"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/291235a0"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"6164928"
]
}
],
"sameAs": [
"https://doi.org/10.1038/291235a0",
"https://app.dimensions.ai/details/publication/pub.1023425892"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T21:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_160.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/291235a0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/291235a0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/291235a0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/291235a0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/291235a0'
This table displays all metadata directly associated to this object as RDF triples.
215 TRIPLES
21 PREDICATES
121 URIs
110 LITERALS
18 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/291235a0 | schema:about | N0b1221369eb8412cafc46f6d44a96d14 |
2 | ″ | ″ | N157e36bc5d2d4ca2b9ca492df669d743 |
3 | ″ | ″ | N2a15d163c3f94b78a312e18d9ca2f31d |
4 | ″ | ″ | N2b35f71e9cc94032947db15621bd609c |
5 | ″ | ″ | N31597d0b462c44f1ad5405fb915dfb60 |
6 | ″ | ″ | N4543036923c44c499dde8b7129fab384 |
7 | ″ | ″ | N535553486a50469db139faae8544ee73 |
8 | ″ | ″ | N6510c5d9f3ad4fcaaddb8e3d7dbe2fc6 |
9 | ″ | ″ | N866ea34a6dc54cafbd81a9838aa6b73f |
10 | ″ | ″ | N88589d5fdb8a47a994609c7aad75dbbd |
11 | ″ | ″ | Naf31271c6d2b4223a1a76448cb5fe602 |
12 | ″ | ″ | anzsrc-for:06 |
13 | ″ | ″ | anzsrc-for:0601 |
14 | ″ | ″ | anzsrc-for:0604 |
15 | ″ | schema:author | Nbc5c16c6ca704f9a884efa0ecc5e7e08 |
16 | ″ | schema:citation | sg:pub.10.1007/bf00569266 |
17 | ″ | ″ | sg:pub.10.1038/227680a0 |
18 | ″ | schema:datePublished | 1981-05 |
19 | ″ | schema:datePublishedReg | 1981-05-01 |
20 | ″ | schema:description | F9 is a clonal line of mouse teratocarcinoma-derived embryonal carcinoma (EC) cells which shows very little spontaneous differentiation in vivo or in vitro1. Recently, however, it was reported2–6 that F9 monolayers treated with retinoic acid and dibutyryl cyclic AMP differentiate into an early embryonic cell type known as parietal endoderm, which is one of two distinct populations of extra-embryonic endoderm that differentiate in the normal mouse embryo shortly after implantation7,8. The other population is the visceral endoderm, and the two differ not only in their morphology and location within the embryo, but also in their biochemical properties9–12. Parietal endoderm cells, for example, do not synthesize α-fetoprotein13 (AFP), whereas visceral endoderm cells do13. There is evidence8 that during embryogenesis parietal and visceral endoderm are derived from a common precursor population known as the primary endoderm, and recent experiments with cultured mouse embryos14 suggest that the phenotype of these cells can be modulated by contact with different embryonic tissues. We now show that if F9 EC cultures are treated with retinoic acid when they are in the form of small aggregates, they differentiate on the outer surface cells which morphologically resemble visceral rather than parietal endoderm. In addition, the cells synthesize and secrete AFP, identified by immunoprecipitation and immunoperoxidase reactions using specific anti-AFP immunoglobulin. One interpretation of this result is that F9 cells treated with retinoic acid differentiate first into multipotent cells analogous to the primary endoderm of the normal embryo which then express either the mature parietal or visceral phenotype depending on the nature of the intercellular contact signals they receive. We therefore believe that F9 EC cells may be even more useful than previously supposed for biochemical studies on factors controlling gene expression during mammalian embryogenesis. |
21 | ″ | schema:genre | article |
22 | ″ | schema:isAccessibleForFree | false |
23 | ″ | schema:isPartOf | N9f2d9d96258848519bc6a6d4b18a35ad |
24 | ″ | ″ | Nd2b2c9b2b55c443aa755f690f778140c |
25 | ″ | ″ | sg:journal.1018957 |
26 | ″ | schema:keywords | AFP |
27 | ″ | ″ | AMP |
28 | ″ | ″ | EC cells |
29 | ″ | ″ | EC cultures |
30 | ″ | ″ | F9 |
31 | ″ | ″ | F9 EC cells |
32 | ″ | ″ | F9 cells |
33 | ″ | ″ | Vitro1 |
34 | ″ | ″ | acid |
35 | ″ | ″ | acid differentiates |
36 | ″ | ″ | addition |
37 | ″ | ″ | aggregates |
38 | ″ | ″ | biochemical studies |
39 | ″ | ″ | carcinoma cell differentiation |
40 | ″ | ″ | carcinoma cells |
41 | ″ | ″ | cell differentiation |
42 | ″ | ″ | cell interactions |
43 | ″ | ″ | cell types |
44 | ″ | ″ | cells |
45 | ″ | ″ | clonal lines |
46 | ″ | ″ | common precursor population |
47 | ″ | ″ | contact |
48 | ″ | ″ | contact signals |
49 | ″ | ″ | culture |
50 | ″ | ″ | cyclic AMP |
51 | ″ | ″ | dibutyryl cyclic AMP |
52 | ″ | ″ | different embryonic tissues |
53 | ″ | ″ | differentiates |
54 | ″ | ″ | differentiation |
55 | ″ | ″ | distinct populations |
56 | ″ | ″ | embryogenesis |
57 | ″ | ″ | embryonal carcinoma cell differentiation |
58 | ″ | ″ | embryonal carcinoma cells |
59 | ″ | ″ | embryonic cell types |
60 | ″ | ″ | embryonic tissues |
61 | ″ | ″ | embryos |
62 | ″ | ″ | endoderm |
63 | ″ | ″ | endoderm cells |
64 | ″ | ″ | example |
65 | ″ | ″ | experiments |
66 | ″ | ″ | expression |
67 | ″ | ″ | extra-embryonic endoderm |
68 | ″ | ″ | factors |
69 | ″ | ″ | form |
70 | ″ | ″ | gene expression |
71 | ″ | ″ | immunoglobulin |
72 | ″ | ″ | immunoperoxidase reaction |
73 | ″ | ″ | immunoprecipitation |
74 | ″ | ″ | interaction |
75 | ″ | ″ | interpretation |
76 | ″ | ″ | lines |
77 | ″ | ″ | location |
78 | ″ | ″ | mammalian embryogenesis |
79 | ″ | ″ | monolayers |
80 | ″ | ″ | morphology |
81 | ″ | ″ | mouse embryos |
82 | ″ | ″ | multipotent cells |
83 | ″ | ″ | nature |
84 | ″ | ″ | normal embryos |
85 | ″ | ″ | normal mouse embryos |
86 | ″ | ″ | parietal endoderm |
87 | ″ | ″ | parietal endoderm cells |
88 | ″ | ″ | phenotype |
89 | ″ | ″ | population |
90 | ″ | ″ | precursor population |
91 | ″ | ″ | primary endoderm |
92 | ″ | ″ | reaction |
93 | ″ | ″ | recent experiments |
94 | ″ | ″ | results |
95 | ″ | ″ | retinoic acid |
96 | ″ | ″ | retinoic acid differentiate |
97 | ″ | ″ | signals |
98 | ″ | ″ | small aggregates |
99 | ″ | ″ | spontaneous differentiation |
100 | ″ | ″ | study |
101 | ″ | ″ | surface cells |
102 | ″ | ″ | tissue |
103 | ″ | ″ | types |
104 | ″ | ″ | visceral endoderm |
105 | ″ | ″ | visceral phenotype |
106 | ″ | ″ | vivo |
107 | ″ | schema:name | Cell interactions modulate embryonal carcinoma cell differentiation into parietal or visceral endoderm |
108 | ″ | schema:pagination | 235-237 |
109 | ″ | schema:productId | N92b2a79ef29e474b9eae395df1f4bed5 |
110 | ″ | ″ | Ncc1e2dfa014e4de3b6210c95e774e4f0 |
111 | ″ | ″ | Nf0a146febbe24828b6a5c0205fc2d4b8 |
112 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023425892 |
113 | ″ | ″ | https://doi.org/10.1038/291235a0 |
114 | ″ | schema:sdDatePublished | 2022-06-01T21:58 |
115 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
116 | ″ | schema:sdPublisher | Ne89e4d8e689a4ae7a65e89c3debe00c6 |
117 | ″ | schema:url | https://doi.org/10.1038/291235a0 |
118 | ″ | sgo:license | sg:explorer/license/ |
119 | ″ | sgo:sdDataset | articles |
120 | ″ | rdf:type | schema:ScholarlyArticle |
121 | N0b1221369eb8412cafc46f6d44a96d14 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
122 | ″ | schema:name | Cell Line |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | N157e36bc5d2d4ca2b9ca492df669d743 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
125 | ″ | schema:name | Cell Differentiation |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | N2a15d163c3f94b78a312e18d9ca2f31d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
128 | ″ | schema:name | Animals |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | N2b35f71e9cc94032947db15621bd609c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
131 | ″ | schema:name | Tretinoin |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | N2d19a15bfcb9457e81e7c2f0777110ee | rdf:first | sg:person.01034452734.65 |
134 | ″ | rdf:rest | rdf:nil |
135 | N31597d0b462c44f1ad5405fb915dfb60 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
136 | ″ | schema:name | Mice |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | N4543036923c44c499dde8b7129fab384 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
139 | ″ | schema:name | Clone Cells |
140 | ″ | rdf:type | schema:DefinedTerm |
141 | N535553486a50469db139faae8544ee73 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
142 | ″ | schema:name | Teratoma |
143 | ″ | rdf:type | schema:DefinedTerm |
144 | N6510c5d9f3ad4fcaaddb8e3d7dbe2fc6 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
145 | ″ | schema:name | Embryo, Mammalian |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | N866ea34a6dc54cafbd81a9838aa6b73f | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
148 | ″ | schema:name | Bucladesine |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | N88589d5fdb8a47a994609c7aad75dbbd | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
151 | ″ | schema:name | Cell Aggregation |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | N92b2a79ef29e474b9eae395df1f4bed5 | schema:name | doi |
154 | ″ | schema:value | 10.1038/291235a0 |
155 | ″ | rdf:type | schema:PropertyValue |
156 | N9f2d9d96258848519bc6a6d4b18a35ad | schema:issueNumber | 5812 |
157 | ″ | rdf:type | schema:PublicationIssue |
158 | Naf31271c6d2b4223a1a76448cb5fe602 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
159 | ″ | schema:name | alpha-Fetoproteins |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | Nbc5c16c6ca704f9a884efa0ecc5e7e08 | rdf:first | sg:person.010060100317.01 |
162 | ″ | rdf:rest | Nfbaa86a221fa44d1b03d404d15645b45 |
163 | Ncc1e2dfa014e4de3b6210c95e774e4f0 | schema:name | pubmed_id |
164 | ″ | schema:value | 6164928 |
165 | ″ | rdf:type | schema:PropertyValue |
166 | Nd2b2c9b2b55c443aa755f690f778140c | schema:volumeNumber | 291 |
167 | ″ | rdf:type | schema:PublicationVolume |
168 | Ne89e4d8e689a4ae7a65e89c3debe00c6 | schema:name | Springer Nature - SN SciGraph project |
169 | ″ | rdf:type | schema:Organization |
170 | Nf0a146febbe24828b6a5c0205fc2d4b8 | schema:name | dimensions_id |
171 | ″ | schema:value | pub.1023425892 |
172 | ″ | rdf:type | schema:PropertyValue |
173 | Nfbaa86a221fa44d1b03d404d15645b45 | rdf:first | sg:person.01306121143.73 |
174 | ″ | rdf:rest | N2d19a15bfcb9457e81e7c2f0777110ee |
175 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
176 | ″ | schema:name | Biological Sciences |
177 | ″ | rdf:type | schema:DefinedTerm |
178 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
179 | ″ | schema:name | Biochemistry and Cell Biology |
180 | ″ | rdf:type | schema:DefinedTerm |
181 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
182 | ″ | schema:name | Genetics |
183 | ″ | rdf:type | schema:DefinedTerm |
184 | sg:journal.1018957 | schema:issn | 0028-0836 |
185 | ″ | ″ | 1476-4687 |
186 | ″ | schema:name | Nature |
187 | ″ | schema:publisher | Springer Nature |
188 | ″ | rdf:type | schema:Periodical |
189 | sg:person.010060100317.01 | schema:affiliation | grid-institutes:grid.11485.39 |
190 | ″ | schema:familyName | Hogan |
191 | ″ | schema:givenName | Brigid L. M. |
192 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060100317.01 |
193 | ″ | rdf:type | schema:Person |
194 | sg:person.01034452734.65 | schema:affiliation | grid-institutes:grid.4991.5 |
195 | ″ | schema:familyName | Adamson |
196 | ″ | schema:givenName | Eileen |
197 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034452734.65 |
198 | ″ | rdf:type | schema:Person |
199 | sg:person.01306121143.73 | schema:affiliation | grid-institutes:grid.11485.39 |
200 | ″ | schema:familyName | Taylor |
201 | ″ | schema:givenName | Amanda |
202 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306121143.73 |
203 | ″ | rdf:type | schema:Person |
204 | sg:pub.10.1007/bf00569266 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027503689 |
205 | ″ | ″ | https://doi.org/10.1007/bf00569266 |
206 | ″ | rdf:type | schema:CreativeWork |
207 | sg:pub.10.1038/227680a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010419937 |
208 | ″ | ″ | https://doi.org/10.1038/227680a0 |
209 | ″ | rdf:type | schema:CreativeWork |
210 | grid-institutes:grid.11485.39 | schema:alternateName | Imperial Cancer Research Fund, Mill Hill Laboratories, Burtonhole Lane, NW7 1AD, London, UK |
211 | ″ | schema:name | Imperial Cancer Research Fund, Mill Hill Laboratories, Burtonhole Lane, NW7 1AD, London, UK |
212 | ″ | rdf:type | schema:Organization |
213 | grid-institutes:grid.4991.5 | schema:alternateName | Department of Zoology, University of Oxford, South Parks Road, OX1 2JD, Oxford, UK |
214 | ″ | schema:name | Department of Zoology, University of Oxford, South Parks Road, OX1 2JD, Oxford, UK |
215 | ″ | rdf:type | schema:Organization |