Low molecular weight circular and linear DNA in mitochondria from normal and male-sterile Zea mays cytoplasm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-04

AUTHORS

Roger J. Kemble, John R. Bedbrook

ABSTRACT

Maternally inherited cytoplasmic variation in plants is well documented1. One consequence of such variation in maize (Zea mays L.) is male sterility, sources of which have been classified into three groups (T, S and C) depending on nuclear gene fertility restoration2–4. These groups and the normal (N) male-fertile cytoplasm can be differentiated by restriction endonuclease analysis of mitochondrial DNA (mtDNA)5,6, although differences have also been found within the N and C groups7,8, and mitochondrial translation products9,10. Encouraged by the finding that mitochondria of S-cytoplasmic types contain discrete small DNA species11, we have looked for low molecular weight DNAs in mitochondria from plants with N, T, C and S cytoplasms. We report here that all four cytoplasms contain supercoiled circular DNA molecules of approximately 1,940 base pairs. This is the first small supercoiled circular DNA to be found in higher plants. Its structure suggests it may be an autonomously replicated plasmid. N, C and S cytoplasms also contain a DNA species of approximately 2,350 base pairs which is not present in T cytoplasms. C cytoplasms contain two additional circular DNA species of 1,570 and 1,420 base pairs. More... »

PAGES

565-566

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

5756

VOLUME

284

Related Patents

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/284565a0

DOI

http://dx.doi.org/10.1038/284565a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031873922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Kemble", 
        "givenName": "Roger J.", 
        "id": "sg:person.01156134775.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156134775.55"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Bedbrook", 
        "givenName": "John R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.74.7.2904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003830422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(71)21040-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003865651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.75.8.3841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014446427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2660(08)60046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016688828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(75)80083-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033296365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(71)21033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034580764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.11.5113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044383007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/265687a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046070913", 
          "https://doi.org/10.1038/265687a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/409618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058700669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.193.4248.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062513826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077358851", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jhered.a108858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083485445"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980-04", 
    "datePublishedReg": "1980-04-01", 
    "description": "Maternally inherited cytoplasmic variation in plants is well documented1. One consequence of such variation in maize (Zea mays L.) is male sterility, sources of which have been classified into three groups (T, S and C) depending on nuclear gene fertility restoration2\u20134. These groups and the normal (N) male-fertile cytoplasm can be differentiated by restriction endonuclease analysis of mitochondrial DNA (mtDNA)5,6, although differences have also been found within the N and C groups7,8, and mitochondrial translation products9,10. Encouraged by the finding that mitochondria of S-cytoplasmic types contain discrete small DNA species11, we have looked for low molecular weight DNAs in mitochondria from plants with N, T, C and S cytoplasms. We report here that all four cytoplasms contain supercoiled circular DNA molecules of approximately 1,940 base pairs. This is the first small supercoiled circular DNA to be found in higher plants. Its structure suggests it may be an autonomously replicated plasmid. N, C and S cytoplasms also contain a DNA species of approximately 2,350 base pairs which is not present in T cytoplasms. C cytoplasms contain two additional circular DNA species of 1,570 and 1,420 base pairs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/284565a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5756", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "284"
      }
    ], 
    "name": "Low molecular weight circular and linear DNA in mitochondria from normal and male-sterile Zea mays cytoplasm", 
    "pagination": "565-566", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "97d73d3715657810f09bb173b13533422a9790ab94e968f901c7ecdd7908c298"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/284565a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031873922"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/284565a0", 
      "https://app.dimensions.ai/details/publication/pub.1031873922"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/284565a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/284565a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/284565a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/284565a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/284565a0'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/284565a0 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N9bc34c8762834178943352415a930e02
4 schema:citation sg:pub.10.1038/265687a0
5 https://app.dimensions.ai/details/publication/pub.1077358851
6 https://doi.org/10.1016/s0022-2836(75)80083-0
7 https://doi.org/10.1016/s0065-2660(08)60046-2
8 https://doi.org/10.1016/s0076-6879(71)21033-8
9 https://doi.org/10.1016/s0076-6879(71)21040-5
10 https://doi.org/10.1073/pnas.74.11.5113
11 https://doi.org/10.1073/pnas.74.7.2904
12 https://doi.org/10.1073/pnas.75.8.3841
13 https://doi.org/10.1086/409618
14 https://doi.org/10.1093/oxfordjournals.jhered.a108858
15 https://doi.org/10.1126/science.193.4248.158
16 schema:datePublished 1980-04
17 schema:datePublishedReg 1980-04-01
18 schema:description Maternally inherited cytoplasmic variation in plants is well documented1. One consequence of such variation in maize (Zea mays L.) is male sterility, sources of which have been classified into three groups (T, S and C) depending on nuclear gene fertility restoration2–4. These groups and the normal (N) male-fertile cytoplasm can be differentiated by restriction endonuclease analysis of mitochondrial DNA (mtDNA)5,6, although differences have also been found within the N and C groups7,8, and mitochondrial translation products9,10. Encouraged by the finding that mitochondria of S-cytoplasmic types contain discrete small DNA species11, we have looked for low molecular weight DNAs in mitochondria from plants with N, T, C and S cytoplasms. We report here that all four cytoplasms contain supercoiled circular DNA molecules of approximately 1,940 base pairs. This is the first small supercoiled circular DNA to be found in higher plants. Its structure suggests it may be an autonomously replicated plasmid. N, C and S cytoplasms also contain a DNA species of approximately 2,350 base pairs which is not present in T cytoplasms. C cytoplasms contain two additional circular DNA species of 1,570 and 1,420 base pairs.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N4679b0e807034d6394c38a644d6ed087
23 N71a8806f54ce4744b733678c30cb8a5d
24 sg:journal.1018957
25 schema:name Low molecular weight circular and linear DNA in mitochondria from normal and male-sterile Zea mays cytoplasm
26 schema:pagination 565-566
27 schema:productId N7a31545aa7cd4e83a599d3d0ac904c96
28 Na2684b6b00de4e15b74d58688a276c2d
29 Nbec4789bf7e246f19044aff1abd4c721
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031873922
31 https://doi.org/10.1038/284565a0
32 schema:sdDatePublished 2019-04-11T00:55
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N1336a852c0294528a93dacac3186f688
35 schema:url http://www.nature.com/articles/284565a0
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1336a852c0294528a93dacac3186f688 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N4679b0e807034d6394c38a644d6ed087 schema:issueNumber 5756
42 rdf:type schema:PublicationIssue
43 N6e18215e90a34dcaad348e0491673430 schema:familyName Bedbrook
44 schema:givenName John R.
45 rdf:type schema:Person
46 N71a8806f54ce4744b733678c30cb8a5d schema:volumeNumber 284
47 rdf:type schema:PublicationVolume
48 N7a31545aa7cd4e83a599d3d0ac904c96 schema:name doi
49 schema:value 10.1038/284565a0
50 rdf:type schema:PropertyValue
51 N8f4cda7db3d44aeeaabd68ccb79c4f0a rdf:first N6e18215e90a34dcaad348e0491673430
52 rdf:rest rdf:nil
53 N9bc34c8762834178943352415a930e02 rdf:first sg:person.01156134775.55
54 rdf:rest N8f4cda7db3d44aeeaabd68ccb79c4f0a
55 Na2684b6b00de4e15b74d58688a276c2d schema:name dimensions_id
56 schema:value pub.1031873922
57 rdf:type schema:PropertyValue
58 Nbec4789bf7e246f19044aff1abd4c721 schema:name readcube_id
59 schema:value 97d73d3715657810f09bb173b13533422a9790ab94e968f901c7ecdd7908c298
60 rdf:type schema:PropertyValue
61 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
62 schema:name Biological Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
65 schema:name Genetics
66 rdf:type schema:DefinedTerm
67 sg:journal.1018957 schema:issn 0090-0028
68 1476-4687
69 schema:name Nature
70 rdf:type schema:Periodical
71 sg:person.01156134775.55 schema:familyName Kemble
72 schema:givenName Roger J.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156134775.55
74 rdf:type schema:Person
75 sg:pub.10.1038/265687a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046070913
76 https://doi.org/10.1038/265687a0
77 rdf:type schema:CreativeWork
78 https://app.dimensions.ai/details/publication/pub.1077358851 schema:CreativeWork
79 https://doi.org/10.1016/s0022-2836(75)80083-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033296365
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/s0065-2660(08)60046-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016688828
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/s0076-6879(71)21033-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034580764
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/s0076-6879(71)21040-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003865651
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1073/pnas.74.11.5113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044383007
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1073/pnas.74.7.2904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003830422
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1073/pnas.75.8.3841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014446427
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1086/409618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058700669
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1093/oxfordjournals.jhered.a108858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083485445
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1126/science.193.4248.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062513826
98 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...