Chemical modification reduces the conductance of sodium channels in nerve View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-01

AUTHORS

Frederick J. Sigworth, Bruce C. Spalding

ABSTRACT

Tetrodotoxin (TTX) and saxitoxin (STX) are extremely potent poisons that prevent nerve and muscle cells from producing action potentials by blocking sodium channels1,2. If the channels are modified by reagents that act on carboxyl groups, however, both the binding of these toxins3,4 and their effect on the action potential5 are reduced. One such reagent, trimethyloxonium ion (TMO) converts channels into a form that is not blocked by TTX concentrations 105 times greater than its normal Kd (ref. 6). Most such chemical modifications of sodium channels also reduce the measured membrane sodium current, but it has not been known whether such reductions were due to a change in the number of channels, in permeability properties, or in gating properties. We now report that TMO-modified, TTX-resistant sodium channels have a smaller single-channel conductance (γ) with a more linear instantaneous current–voltage relationship than that of normal channels, and that the measured reduction in γ accounts for all of the decrease in sodium current after TMO treatment. This change in sodium channel permeability properties can be explained by the removal of a fixed negative charge near the outside of the channel. More... »

PAGES

293-295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/283293a0

DOI

http://dx.doi.org/10.1038/283293a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042145759

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6965422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anura", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane Permeability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Conductivity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ion Channels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Onium Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rana pipiens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ranvier's Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sodium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tetrodotoxin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physiology, Yale University School of Medicine, 06510, New Haven, Connecticut", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Physiology, Yale University School of Medicine, 06510, New Haven, Connecticut"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sigworth", 
        "givenName": "Frederick J.", 
        "id": "sg:person.011504544754.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504544754.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institut f\u00fcr Biophysikalische Chemie, Postfach 968, D-3400, G\u00f6ttingen, FRG", 
          "id": "http://www.grid.ac/institutes/grid.418140.8", 
          "name": [
            "Department of Physiology and Biophysics, University of Washington School of Medicine, 98195, Seattle, Washington", 
            "Max Planck Institut f\u00fcr Biophysikalische Chemie, Postfach 968, D-3400, G\u00f6ttingen, FRG"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spalding", 
        "givenName": "Bruce C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00362660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017593913", 
          "https://doi.org/10.1007/bf00362660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/270265a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051659899", 
          "https://doi.org/10.1038/270265a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0037088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034338670", 
          "https://doi.org/10.1007/bfb0037088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01869403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029432877", 
          "https://doi.org/10.1007/bf01869403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/257412a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019689679", 
          "https://doi.org/10.1038/257412a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980-01", 
    "datePublishedReg": "1980-01-01", 
    "description": "Tetrodotoxin (TTX) and saxitoxin (STX) are extremely potent poisons that prevent nerve and muscle cells from producing action potentials by blocking sodium channels1,2. If the channels are modified by reagents that act on carboxyl groups, however, both the binding of these toxins3,4 and their effect on the action potential5 are reduced. One such reagent, trimethyloxonium ion (TMO) converts channels into a form that is not blocked by TTX concentrations 105 times greater than its normal Kd (ref. 6). Most such chemical modifications of sodium channels also reduce the measured membrane sodium current, but it has not been known whether such reductions were due to a change in the number of channels, in permeability properties, or in gating properties. We now report that TMO-modified, TTX-resistant sodium channels have a smaller single-channel conductance (\u03b3) with a more linear instantaneous current\u2013voltage relationship than that of normal channels, and that the measured reduction in \u03b3 accounts for all of the decrease in sodium current after TMO treatment. This change in sodium channel permeability properties can be explained by the removal of a fixed negative charge near the outside of the channel.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/283293a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5744", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "283"
      }
    ], 
    "keywords": [
      "chemical modification", 
      "trimethyloxonium ion", 
      "such chemical modifications", 
      "carboxyl groups", 
      "negative charge", 
      "such reagents", 
      "TMO treatment", 
      "permeability properties", 
      "reagents", 
      "linear instantaneous current-voltage relationship", 
      "smaller single-channel conductance", 
      "properties", 
      "potent poison", 
      "normal Kd", 
      "ions", 
      "saxitoxin", 
      "modification", 
      "charge", 
      "TTX-resistant sodium channels", 
      "membrane sodium currents", 
      "binding", 
      "poisons", 
      "single-channel conductance", 
      "removal", 
      "sodium", 
      "reduction", 
      "conductance", 
      "potential", 
      "sodium channels", 
      "current", 
      "Kd", 
      "channels", 
      "such reduction", 
      "form", 
      "group", 
      "current-voltage relationship", 
      "changes", 
      "effect", 
      "decrease", 
      "cells", 
      "time", 
      "outside", 
      "sodium current", 
      "treatment", 
      "action potentials", 
      "muscle cells", 
      "number", 
      "nerve", 
      "account", 
      "tetrodotoxin", 
      "relationship", 
      "instantaneous current-voltage relationship", 
      "normal channels", 
      "number of channels"
    ], 
    "name": "Chemical modification reduces the conductance of sodium channels in nerve", 
    "pagination": "293-295", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042145759"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/283293a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6965422"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/283293a0", 
      "https://app.dimensions.ai/details/publication/pub.1042145759"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_181.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/283293a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/283293a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/283293a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/283293a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/283293a0'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      98 URIs      85 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/283293a0 schema:about N03b1ab8051f7464d87acdd463c012943
2 N2a4d55ce89e5406abd16f52e66e395f6
3 N30fb092aa9f54ed695bc4a389aa1306e
4 N7f8a334bcf4c4b27a2906272a0fbba96
5 N90465e0d018d41e6bfdd94b3cbaf31f4
6 N9a904bf2def041779bbad19dcd861f6d
7 Nb2b0c084cc6a4d7ea88efba5095415a7
8 Nc506658b82684183876fe14b2a50eff2
9 Nd8a7f8e62ac246eaa3ec46f3416d87ec
10 Nfbb4aa28f5e04cc6b6e78edd2d64b53b
11 Nfbc11fb1954047759190e216e34342d0
12 Nfd3a16b51ae24583984b008d5933697a
13 anzsrc-for:11
14 anzsrc-for:1116
15 schema:author Ne87fac8c910b482fb8c66f18256d4acb
16 schema:citation sg:pub.10.1007/bf00362660
17 sg:pub.10.1007/bf01869403
18 sg:pub.10.1007/bfb0037088
19 sg:pub.10.1038/257412a0
20 sg:pub.10.1038/270265a0
21 schema:datePublished 1980-01
22 schema:datePublishedReg 1980-01-01
23 schema:description Tetrodotoxin (TTX) and saxitoxin (STX) are extremely potent poisons that prevent nerve and muscle cells from producing action potentials by blocking sodium channels1,2. If the channels are modified by reagents that act on carboxyl groups, however, both the binding of these toxins3,4 and their effect on the action potential5 are reduced. One such reagent, trimethyloxonium ion (TMO) converts channels into a form that is not blocked by TTX concentrations 105 times greater than its normal Kd (ref. 6). Most such chemical modifications of sodium channels also reduce the measured membrane sodium current, but it has not been known whether such reductions were due to a change in the number of channels, in permeability properties, or in gating properties. We now report that TMO-modified, TTX-resistant sodium channels have a smaller single-channel conductance (γ) with a more linear instantaneous current–voltage relationship than that of normal channels, and that the measured reduction in γ accounts for all of the decrease in sodium current after TMO treatment. This change in sodium channel permeability properties can be explained by the removal of a fixed negative charge near the outside of the channel.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N924641ac6acb472094287777dd3aefff
28 Ndd4e08a94ad74eef8d5231044726dda0
29 sg:journal.1018957
30 schema:keywords Kd
31 TMO treatment
32 TTX-resistant sodium channels
33 account
34 action potentials
35 binding
36 carboxyl groups
37 cells
38 changes
39 channels
40 charge
41 chemical modification
42 conductance
43 current
44 current-voltage relationship
45 decrease
46 effect
47 form
48 group
49 instantaneous current-voltage relationship
50 ions
51 linear instantaneous current-voltage relationship
52 membrane sodium currents
53 modification
54 muscle cells
55 negative charge
56 nerve
57 normal Kd
58 normal channels
59 number
60 number of channels
61 outside
62 permeability properties
63 poisons
64 potent poison
65 potential
66 properties
67 reagents
68 reduction
69 relationship
70 removal
71 saxitoxin
72 single-channel conductance
73 smaller single-channel conductance
74 sodium
75 sodium channels
76 sodium current
77 such chemical modifications
78 such reagents
79 such reduction
80 tetrodotoxin
81 time
82 treatment
83 trimethyloxonium ion
84 schema:name Chemical modification reduces the conductance of sodium channels in nerve
85 schema:pagination 293-295
86 schema:productId Nb555c9a06c9d49439b535f4f098a6eb5
87 Nbe511763c6484056a0c3f8cd2feaa756
88 Nd8afd83676d74126a291ac9b513dceaa
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042145759
90 https://doi.org/10.1038/283293a0
91 schema:sdDatePublished 2022-05-10T09:42
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Ne89aff22acc9448596f2b8fc67ba8cd8
94 schema:url https://doi.org/10.1038/283293a0
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N02676e07510d4ef4a5d48096dfcff7cb schema:affiliation grid-institutes:grid.418140.8
99 schema:familyName Spalding
100 schema:givenName Bruce C.
101 rdf:type schema:Person
102 N03b1ab8051f7464d87acdd463c012943 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Electric Conductivity
104 rdf:type schema:DefinedTerm
105 N0f84312102924267aabd074c871fb076 rdf:first N02676e07510d4ef4a5d48096dfcff7cb
106 rdf:rest rdf:nil
107 N2a4d55ce89e5406abd16f52e66e395f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Membrane Potentials
109 rdf:type schema:DefinedTerm
110 N30fb092aa9f54ed695bc4a389aa1306e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Ranvier's Nodes
112 rdf:type schema:DefinedTerm
113 N7f8a334bcf4c4b27a2906272a0fbba96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name In Vitro Techniques
115 rdf:type schema:DefinedTerm
116 N90465e0d018d41e6bfdd94b3cbaf31f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Tetrodotoxin
118 rdf:type schema:DefinedTerm
119 N924641ac6acb472094287777dd3aefff schema:volumeNumber 283
120 rdf:type schema:PublicationVolume
121 N9a904bf2def041779bbad19dcd861f6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Anura
123 rdf:type schema:DefinedTerm
124 Nb2b0c084cc6a4d7ea88efba5095415a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Animals
126 rdf:type schema:DefinedTerm
127 Nb555c9a06c9d49439b535f4f098a6eb5 schema:name dimensions_id
128 schema:value pub.1042145759
129 rdf:type schema:PropertyValue
130 Nbe511763c6484056a0c3f8cd2feaa756 schema:name pubmed_id
131 schema:value 6965422
132 rdf:type schema:PropertyValue
133 Nc506658b82684183876fe14b2a50eff2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Sodium
135 rdf:type schema:DefinedTerm
136 Nd8a7f8e62ac246eaa3ec46f3416d87ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Ion Channels
138 rdf:type schema:DefinedTerm
139 Nd8afd83676d74126a291ac9b513dceaa schema:name doi
140 schema:value 10.1038/283293a0
141 rdf:type schema:PropertyValue
142 Ndd4e08a94ad74eef8d5231044726dda0 schema:issueNumber 5744
143 rdf:type schema:PublicationIssue
144 Ne87fac8c910b482fb8c66f18256d4acb rdf:first sg:person.011504544754.58
145 rdf:rest N0f84312102924267aabd074c871fb076
146 Ne89aff22acc9448596f2b8fc67ba8cd8 schema:name Springer Nature - SN SciGraph project
147 rdf:type schema:Organization
148 Nfbb4aa28f5e04cc6b6e78edd2d64b53b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Onium Compounds
150 rdf:type schema:DefinedTerm
151 Nfbc11fb1954047759190e216e34342d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Cell Membrane Permeability
153 rdf:type schema:DefinedTerm
154 Nfd3a16b51ae24583984b008d5933697a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Rana pipiens
156 rdf:type schema:DefinedTerm
157 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical and Health Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
161 schema:name Medical Physiology
162 rdf:type schema:DefinedTerm
163 sg:journal.1018957 schema:issn 0028-0836
164 1476-4687
165 schema:name Nature
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.011504544754.58 schema:affiliation grid-institutes:grid.47100.32
169 schema:familyName Sigworth
170 schema:givenName Frederick J.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504544754.58
172 rdf:type schema:Person
173 sg:pub.10.1007/bf00362660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017593913
174 https://doi.org/10.1007/bf00362660
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/bf01869403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029432877
177 https://doi.org/10.1007/bf01869403
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/bfb0037088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034338670
180 https://doi.org/10.1007/bfb0037088
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/257412a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019689679
183 https://doi.org/10.1038/257412a0
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/270265a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051659899
186 https://doi.org/10.1038/270265a0
187 rdf:type schema:CreativeWork
188 grid-institutes:grid.418140.8 schema:alternateName Max Planck Institut für Biophysikalische Chemie, Postfach 968, D-3400, Göttingen, FRG
189 schema:name Department of Physiology and Biophysics, University of Washington School of Medicine, 98195, Seattle, Washington
190 Max Planck Institut für Biophysikalische Chemie, Postfach 968, D-3400, Göttingen, FRG
191 rdf:type schema:Organization
192 grid-institutes:grid.47100.32 schema:alternateName Department of Physiology, Yale University School of Medicine, 06510, New Haven, Connecticut
193 schema:name Department of Physiology, Yale University School of Medicine, 06510, New Haven, Connecticut
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...