Localisation of the Gγ-, Aγ-, δ- and β-globin genes on the short arm of human chromosome 11 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-10

AUTHORS

Alec J. Jeffreys, Ian W. Craig, Uta Francke

ABSTRACT

Human–mouse somatic cell hybrids have proved invaluable in assigning human genes to their respective human chromosomes1. To date, the success of this approach has depended on identifying human proteins which are synthesised in hybrid cells containing a small number of human chromosomes. Consequently, chromosome assignment has been limited mainly to human proteins which are expressed in man–mouse somatic cell hybrids and for which a suitable assay, usually electrophoretic or immunological, exists to distinguish between the human and murine homologous proteins. This technique is therefore unsuitable for the assignment of those human genes which are expressed only in differentiated cells and not in hybrid cells. Here, we describe how nucleic acid hybridisation and restriction endonuclease mapping of DNA can be combined to test for the presence of human structural gene sequences within hybrid cell DNA. This method can be used to assign any purified human DNA sequence to a human chromosome, and does not require the DNA sequence to be expressed in man–mouse hybrid cells. More... »

PAGES

606-608

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/281606a0

DOI

http://dx.doi.org/10.1038/281606a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003055768

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/492329


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Human, 6-12 and X", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fetal Hemoglobin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Globins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemoglobin A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hybrid Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Hybridization", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genetics Department, University of Leicester, University Road, Leicester, UK", 
          "id": "http://www.grid.ac/institutes/grid.9918.9", 
          "name": [
            "Genetics Department, University of Leicester, University Road, Leicester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeffreys", 
        "givenName": "Alec J.", 
        "id": "sg:person.01010325224.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010325224.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genetics Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Genetics Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Craig", 
        "givenName": "Ian W.", 
        "id": "sg:person.01324664506.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324664506.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Human Genetics, Yale University School of Medicine, 333, Cedar Street, 06510, New Haven, Connecticut", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Human Genetics, Yale University School of Medicine, 333, Cedar Street, 06510, New Haven, Connecticut"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Francke", 
        "givenName": "Uta", 
        "id": "sg:person.01003124173.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003124173.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/278227a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022076046", 
          "https://doi.org/10.1038/278227a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/273640a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005990709", 
          "https://doi.org/10.1038/273640a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-10", 
    "datePublishedReg": "1979-10-01", 
    "description": "Human\u2013mouse somatic cell hybrids have proved invaluable in assigning human genes to their respective human chromosomes1. To date, the success of this approach has depended on identifying human proteins which are synthesised in hybrid cells containing a small number of human chromosomes. Consequently, chromosome assignment has been limited mainly to human proteins which are expressed in man\u2013mouse somatic cell hybrids and for which a suitable assay, usually electrophoretic or immunological, exists to distinguish between the human and murine homologous proteins. This technique is therefore unsuitable for the assignment of those human genes which are expressed only in differentiated cells and not in hybrid cells. Here, we describe how nucleic acid hybridisation and restriction endonuclease mapping of DNA can be combined to test for the presence of human structural gene sequences within hybrid cell DNA. This method can be used to assign any purified human DNA sequence to a human chromosome, and does not require the DNA sequence to be expressed in man\u2013mouse hybrid cells.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/281606a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5732", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "281"
      }
    ], 
    "keywords": [
      "somatic cell hybrids", 
      "cell hybrids", 
      "human genes", 
      "DNA sequences", 
      "human chromosomes", 
      "human proteins", 
      "human-mouse somatic cell hybrids", 
      "hybrid cells", 
      "man-mouse somatic cell hybrids", 
      "structural gene sequences", 
      "human chromosome 11", 
      "hybrid cell DNA", 
      "human DNA sequences", 
      "restriction endonuclease mapping", 
      "chromosome assignment", 
      "gene sequences", 
      "globin genes", 
      "nucleic acid hybridisation", 
      "homologous proteins", 
      "endonuclease mapping", 
      "chromosome 11", 
      "differentiated cells", 
      "short arm", 
      "genes", 
      "cell DNA", 
      "protein", 
      "chromosomes", 
      "DNA", 
      "sequence", 
      "cells", 
      "suitable assay", 
      "hybrids", 
      "G\u03b3", 
      "chromosomes1", 
      "hybridisation", 
      "assays", 
      "localisation", 
      "small number", 
      "humans", 
      "mapping", 
      "A\u03b3", 
      "presence", 
      "assignment", 
      "date", 
      "number", 
      "success", 
      "arm", 
      "approach", 
      "method", 
      "technique", 
      "respective human chromosomes1", 
      "human chromosomes1", 
      "murine homologous proteins", 
      "acid hybridisation", 
      "human structural gene sequences", 
      "man\u2013mouse hybrid cells"
    ], 
    "name": "Localisation of the G\u03b3-, A\u03b3-, \u03b4- and \u03b2-globin genes on the short arm of human chromosome 11", 
    "pagination": "606-608", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003055768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/281606a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "492329"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/281606a0", 
      "https://app.dimensions.ai/details/publication/pub.1003055768"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_129.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/281606a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/281606a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/281606a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/281606a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/281606a0'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      22 PREDICATES      96 URIs      85 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/281606a0 schema:about N008ffe6461d242c1a7447f5f2116b544
2 N02dd24ff06c04c029d4ae80b6b92b188
3 N487d0b19158541e88cff15baf3a79853
4 N7f893279bdfd4add8a149eb380139ac1
5 Na4990cfd06dc4fbc8266c81ba4782831
6 Na75815a2a3fa4d1aa4fc36b4ba2a1533
7 Ncb25d6b2b68e4bd181a2a3e9f5e027f0
8 Nda8bbbc8ee8a4bac9ece87ae47e2dc15
9 Nf80b3aa5634b49868e7b8fb10a1bf09b
10 Nfa068bb217e84550af0d95b18ca71f60
11 anzsrc-for:06
12 anzsrc-for:0601
13 anzsrc-for:0604
14 schema:author N10f1a42fc8b54e95b77357fd821c2341
15 schema:citation sg:pub.10.1038/273640a0
16 sg:pub.10.1038/278227a0
17 schema:datePublished 1979-10
18 schema:datePublishedReg 1979-10-01
19 schema:description Human–mouse somatic cell hybrids have proved invaluable in assigning human genes to their respective human chromosomes1. To date, the success of this approach has depended on identifying human proteins which are synthesised in hybrid cells containing a small number of human chromosomes. Consequently, chromosome assignment has been limited mainly to human proteins which are expressed in man–mouse somatic cell hybrids and for which a suitable assay, usually electrophoretic or immunological, exists to distinguish between the human and murine homologous proteins. This technique is therefore unsuitable for the assignment of those human genes which are expressed only in differentiated cells and not in hybrid cells. Here, we describe how nucleic acid hybridisation and restriction endonuclease mapping of DNA can be combined to test for the presence of human structural gene sequences within hybrid cell DNA. This method can be used to assign any purified human DNA sequence to a human chromosome, and does not require the DNA sequence to be expressed in man–mouse hybrid cells.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N3d0e3a91712948c0ba6334c979f0a7fd
24 Ne1087b74917d4467a669f58201e20de5
25 sg:journal.1018957
26 schema:keywords
27 DNA
28 DNA sequences
29
30 acid hybridisation
31 approach
32 arm
33 assays
34 assignment
35 cell DNA
36 cell hybrids
37 cells
38 chromosome 11
39 chromosome assignment
40 chromosomes
41 chromosomes1
42 date
43 differentiated cells
44 endonuclease mapping
45 gene sequences
46 genes
47 globin genes
48 homologous proteins
49 human DNA sequences
50 human chromosome 11
51 human chromosomes
52 human chromosomes1
53 human genes
54 human proteins
55 human structural gene sequences
56 human-mouse somatic cell hybrids
57 humans
58 hybrid cell DNA
59 hybrid cells
60 hybridisation
61 hybrids
62 localisation
63 man-mouse somatic cell hybrids
64 man–mouse hybrid cells
65 mapping
66 method
67 murine homologous proteins
68 nucleic acid hybridisation
69 number
70 presence
71 protein
72 respective human chromosomes1
73 restriction endonuclease mapping
74 sequence
75 short arm
76 small number
77 somatic cell hybrids
78 structural gene sequences
79 success
80 suitable assay
81 technique
82 schema:name Localisation of the Gγ-, Aγ-, δ- and β-globin genes on the short arm of human chromosome 11
83 schema:pagination 606-608
84 schema:productId N858a978a912141a185356b73038951f8
85 Naf7a3db3acc04c8fa43b739feb364ca9
86 Nb87e4826968c4dce86568ad921e6823b
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003055768
88 https://doi.org/10.1038/281606a0
89 schema:sdDatePublished 2021-12-01T19:02
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nebbe936a1d89422aa546cf687a60db7f
92 schema:url https://doi.org/10.1038/281606a0
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N008ffe6461d242c1a7447f5f2116b544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Globins
98 rdf:type schema:DefinedTerm
99 N02dd24ff06c04c029d4ae80b6b92b188 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Hybrid Cells
101 rdf:type schema:DefinedTerm
102 N10f1a42fc8b54e95b77357fd821c2341 rdf:first sg:person.01010325224.35
103 rdf:rest N36a8c032ea0d4aad92ce1822a0a07b60
104 N36a8c032ea0d4aad92ce1822a0a07b60 rdf:first sg:person.01324664506.39
105 rdf:rest Nad453822c8b84f5e803f1e8d2f211451
106 N3d0e3a91712948c0ba6334c979f0a7fd schema:issueNumber 5732
107 rdf:type schema:PublicationIssue
108 N487d0b19158541e88cff15baf3a79853 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Nucleic Acid Hybridization
110 rdf:type schema:DefinedTerm
111 N7f893279bdfd4add8a149eb380139ac1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Chromosomes, Human, 6-12 and X
113 rdf:type schema:DefinedTerm
114 N858a978a912141a185356b73038951f8 schema:name pubmed_id
115 schema:value 492329
116 rdf:type schema:PropertyValue
117 Na4990cfd06dc4fbc8266c81ba4782831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Hemoglobin A
119 rdf:type schema:DefinedTerm
120 Na75815a2a3fa4d1aa4fc36b4ba2a1533 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Genes
122 rdf:type schema:DefinedTerm
123 Nad453822c8b84f5e803f1e8d2f211451 rdf:first sg:person.01003124173.75
124 rdf:rest rdf:nil
125 Naf7a3db3acc04c8fa43b739feb364ca9 schema:name dimensions_id
126 schema:value pub.1003055768
127 rdf:type schema:PropertyValue
128 Nb87e4826968c4dce86568ad921e6823b schema:name doi
129 schema:value 10.1038/281606a0
130 rdf:type schema:PropertyValue
131 Ncb25d6b2b68e4bd181a2a3e9f5e027f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Mice
133 rdf:type schema:DefinedTerm
134 Nda8bbbc8ee8a4bac9ece87ae47e2dc15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Humans
136 rdf:type schema:DefinedTerm
137 Ne1087b74917d4467a669f58201e20de5 schema:volumeNumber 281
138 rdf:type schema:PublicationVolume
139 Nebbe936a1d89422aa546cf687a60db7f schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 Nf80b3aa5634b49868e7b8fb10a1bf09b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Fetal Hemoglobin
143 rdf:type schema:DefinedTerm
144 Nfa068bb217e84550af0d95b18ca71f60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Animals
146 rdf:type schema:DefinedTerm
147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
148 schema:name Biological Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
151 schema:name Biochemistry and Cell Biology
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
154 schema:name Genetics
155 rdf:type schema:DefinedTerm
156 sg:journal.1018957 schema:issn 0028-0836
157 1476-4687
158 schema:name Nature
159 schema:publisher Springer Nature
160 rdf:type schema:Periodical
161 sg:person.01003124173.75 schema:affiliation grid-institutes:grid.47100.32
162 schema:familyName Francke
163 schema:givenName Uta
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003124173.75
165 rdf:type schema:Person
166 sg:person.01010325224.35 schema:affiliation grid-institutes:grid.9918.9
167 schema:familyName Jeffreys
168 schema:givenName Alec J.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010325224.35
170 rdf:type schema:Person
171 sg:person.01324664506.39 schema:affiliation grid-institutes:grid.4991.5
172 schema:familyName Craig
173 schema:givenName Ian W.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324664506.39
175 rdf:type schema:Person
176 sg:pub.10.1038/273640a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005990709
177 https://doi.org/10.1038/273640a0
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/278227a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022076046
180 https://doi.org/10.1038/278227a0
181 rdf:type schema:CreativeWork
182 grid-institutes:grid.47100.32 schema:alternateName Department of Human Genetics, Yale University School of Medicine, 333, Cedar Street, 06510, New Haven, Connecticut
183 schema:name Department of Human Genetics, Yale University School of Medicine, 333, Cedar Street, 06510, New Haven, Connecticut
184 rdf:type schema:Organization
185 grid-institutes:grid.4991.5 schema:alternateName Genetics Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
186 schema:name Genetics Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
187 rdf:type schema:Organization
188 grid-institutes:grid.9918.9 schema:alternateName Genetics Department, University of Leicester, University Road, Leicester, UK
189 schema:name Genetics Department, University of Leicester, University Road, Leicester, UK
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...