Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-09

AUTHORS

Marilyn Monk, Mary I. Harper

ABSTRACT

Only one of the two X chromosomes is active in each somatic cell of adult female eutherian mammals, making the females (XX) equivalent to the males (XY) with respect to X chromosome dosage1–4. Biochemical analyses showing that both X chromosomes are active in female mouse embryos in midcleavage stage4–8 indicate that X chromosome differentiation involves inactivation. This event occurs in most or all cells of the embryo at the blastocyst stage4,7–9, when there are two cell types, the outer sphere of trophectoderm cells and the inner cell mass (ICM). Because there is genetic evidence that both X chromosomes are potentially active in ICM cells10, it has been suggested that X chromosome inactivation has occurred in only the trophectoderm cells9. Further, one of us (M.M.)4 has proposed that X chromosome differentiation is linked to cellular differentiation, occurring at different times in different cell populations as they ‘depart’ or terminally differentiate from a pluripotent fetal ‘stem line’ (Fig. 1). Analysis of a large number of inner cell masses isolated immunosurgically from female blastocysts has yielded data consistent with the presence of two active X chromosomes11, but ICMs are so small that the biochemical assay used was at the limit of its accuracy. (Nevertheless, a computer analysis of the data8 indicated two ICM populations differing twofold with respect to X chromosome activity.) More tissue is available for analysis in post-implantation embryos, in which, on the above hypothesis, we would expect two active X chromosomes in the pluripotent epiblast region before gastrulation, but only one in the corresponding extra-embryonic ectoderm (a trophectoderm-derived tissue12) and primary endoderm (ICM-derived12, see Fig. 1). We report here that this is the case; we also show that inactivation is complete in the epiblast (fetal precursor) cells between 6.0 and 6.5 d of gestation at the onset of gastrulation. More... »

PAGES

311-313

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/281311a0

DOI

http://dx.doi.org/10.1038/281311a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006848596

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/551278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenine Phosphoribosyltransferase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blastocyst", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Differentiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chimera", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ectoderm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endoderm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gestational Age", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypoxanthine Phosphoribosyltransferase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Chromosomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "X Chromosome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MRC Mammalian Development Unit, Wolfson House, 4 Stephenson Way, NW1, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.14105.31", 
          "name": [
            "MRC Mammalian Development Unit, Wolfson House, 4 Stephenson Way, NW1, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monk", 
        "givenName": "Marilyn", 
        "id": "sg:person.0746606034.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746606034.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Mammalian Development Unit, Wolfson House, 4 Stephenson Way, NW1, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.14105.31", 
          "name": [
            "MRC Mammalian Development Unit, Wolfson House, 4 Stephenson Way, NW1, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harper", 
        "givenName": "Mary I.", 
        "id": "sg:person.062151047.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.062151047.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/271329a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022315500", 
          "https://doi.org/10.1038/271329a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01538668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006795687", 
          "https://doi.org/10.1007/bf01538668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/231385a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021372942", 
          "https://doi.org/10.1038/231385a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/274503a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031353170", 
          "https://doi.org/10.1038/274503a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/270599a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028322312", 
          "https://doi.org/10.1038/270599a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/274500a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043684925", 
          "https://doi.org/10.1038/274500a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/262580a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002661830", 
          "https://doi.org/10.1038/262580a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/267838a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031235424", 
          "https://doi.org/10.1038/267838a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/239087a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024703623", 
          "https://doi.org/10.1038/239087a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0659-8_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018497554", 
          "https://doi.org/10.1007/978-1-4757-0659-8_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/256640a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040396760", 
          "https://doi.org/10.1038/256640a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-09", 
    "datePublishedReg": "1979-09-01", 
    "description": "Only one of the two X chromosomes is active in each somatic cell of adult female eutherian mammals, making the females (XX) equivalent to the males (XY) with respect to X chromosome dosage1\u20134. Biochemical analyses showing that both X chromosomes are active in female mouse embryos in midcleavage stage4\u20138 indicate that X chromosome differentiation involves inactivation. This event occurs in most or all cells of the embryo at the blastocyst stage4,7\u20139, when there are two cell types, the outer sphere of trophectoderm cells and the inner cell mass (ICM). Because there is genetic evidence that both X chromosomes are potentially active in ICM cells10, it has been suggested that X chromosome inactivation has occurred in only the trophectoderm cells9. Further, one of us (M.M.)4 has proposed that X chromosome differentiation is linked to cellular differentiation, occurring at different times in different cell populations as they \u2018depart\u2019 or terminally differentiate from a pluripotent fetal \u2018stem line\u2019 (Fig. 1). Analysis of a large number of inner cell masses isolated immunosurgically from female blastocysts has yielded data consistent with the presence of two active X chromosomes11, but ICMs are so small that the biochemical assay used was at the limit of its accuracy. (Nevertheless, a computer analysis of the data8 indicated two ICM populations differing twofold with respect to X chromosome activity.) More tissue is available for analysis in post-implantation embryos, in which, on the above hypothesis, we would expect two active X chromosomes in the pluripotent epiblast region before gastrulation, but only one in the corresponding extra-embryonic ectoderm (a trophectoderm-derived tissue12) and primary endoderm (ICM-derived12, see Fig. 1). We report here that this is the case; we also show that inactivation is complete in the epiblast (fetal precursor) cells between 6.0 and 6.5 d of gestation at the onset of gastrulation.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/281311a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5729", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "281"
      }
    ], 
    "keywords": [
      "inner cell mass", 
      "chromosome differentiation", 
      "chromosome inactivation", 
      "mouse embryos", 
      "cellular differentiation", 
      "female eutherian mammals", 
      "extra-embryonic ectoderm", 
      "female mouse embryos", 
      "post-implantation embryos", 
      "early mouse embryos", 
      "onset of gastrulation", 
      "cell mass", 
      "epiblast cells", 
      "female blastocysts", 
      "primary endoderm", 
      "somatic cells", 
      "eutherian mammals", 
      "genetic evidence", 
      "chromosomes", 
      "trophectoderm cells", 
      "different cell populations", 
      "embryos", 
      "cell types", 
      "gastrulation", 
      "biochemical analysis", 
      "differentiation", 
      "cell populations", 
      "inactivation", 
      "blastocysts", 
      "cells", 
      "more tissue", 
      "endoderm", 
      "ectoderm", 
      "mammals", 
      "stem line", 
      "above hypothesis", 
      "large number", 
      "different times", 
      "tissue", 
      "analysis", 
      "population", 
      "lines", 
      "region", 
      "hypothesis", 
      "mass", 
      "females", 
      "events", 
      "presence", 
      "evidence", 
      "males", 
      "stage4", 
      "types", 
      "number", 
      "data", 
      "onset", 
      "respect", 
      "time", 
      "gestation", 
      "limit", 
      "cases", 
      "accuracy", 
      "outer sphere", 
      "sphere", 
      "adult female eutherian mammals", 
      "chromosome dosage1", 
      "dosage1", 
      "midcleavage stage4", 
      "ICM cells10", 
      "cells10", 
      "trophectoderm cells9", 
      "cells9", 
      "chromosomes11", 
      "pluripotent epiblast region", 
      "epiblast region", 
      "corresponding extra-embryonic ectoderm"
    ], 
    "name": "Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos", 
    "pagination": "311-313", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006848596"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/281311a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "551278"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/281311a0", 
      "https://app.dimensions.ai/details/publication/pub.1006848596"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_139.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/281311a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/281311a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/281311a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/281311a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/281311a0'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      21 PREDICATES      129 URIs      109 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/281311a0 schema:about N000bd3c4801d41ac89a6415490054b3c
2 N000c1e529a814d2fa64b73fbdd4d367e
3 N0da45a7633ce47b793f6307ab79e5d32
4 N37254888e85a4e8e8e9957a1508a194c
5 N374fc8e3f78d4e0eaca329b879b39460
6 N6808d535cc334cbe892aa769a7148f7d
7 N6f1f1cadb7894845a691ced76ae8a90c
8 N6fa394568b544fd2843cc0060757d1bd
9 N723bf93e07914a7a98de1d721e3ecf03
10 N7464b21b7d7245d58106d54689067d31
11 N75002ab0fd204763a3ed7f0a9172b88c
12 N7b9bf87f239740d29ab0d93d2ebc7df1
13 Nb2b5fca738dd4cc9949f92a05be2af7b
14 Ncfa1b5b572454f5fbf14d6f7e0ff6ac0
15 Nefbb5e4b469e4799a2b7ee623e1b46ae
16 Nfcbc1b4fbe934acebffb5d9ad39060b9
17 anzsrc-for:06
18 anzsrc-for:0601
19 anzsrc-for:0604
20 schema:author Ncd5262488e8a423bac4aa5fa15852f06
21 schema:citation sg:pub.10.1007/978-1-4757-0659-8_3
22 sg:pub.10.1007/bf01538668
23 sg:pub.10.1038/231385a0
24 sg:pub.10.1038/239087a0
25 sg:pub.10.1038/256640a0
26 sg:pub.10.1038/262580a0
27 sg:pub.10.1038/267838a0
28 sg:pub.10.1038/270599a0
29 sg:pub.10.1038/271329a0
30 sg:pub.10.1038/274500a0
31 sg:pub.10.1038/274503a0
32 schema:datePublished 1979-09
33 schema:datePublishedReg 1979-09-01
34 schema:description Only one of the two X chromosomes is active in each somatic cell of adult female eutherian mammals, making the females (XX) equivalent to the males (XY) with respect to X chromosome dosage1–4. Biochemical analyses showing that both X chromosomes are active in female mouse embryos in midcleavage stage4–8 indicate that X chromosome differentiation involves inactivation. This event occurs in most or all cells of the embryo at the blastocyst stage4,7–9, when there are two cell types, the outer sphere of trophectoderm cells and the inner cell mass (ICM). Because there is genetic evidence that both X chromosomes are potentially active in ICM cells10, it has been suggested that X chromosome inactivation has occurred in only the trophectoderm cells9. Further, one of us (M.M.)4 has proposed that X chromosome differentiation is linked to cellular differentiation, occurring at different times in different cell populations as they ‘depart’ or terminally differentiate from a pluripotent fetal ‘stem line’ (Fig. 1). Analysis of a large number of inner cell masses isolated immunosurgically from female blastocysts has yielded data consistent with the presence of two active X chromosomes11, but ICMs are so small that the biochemical assay used was at the limit of its accuracy. (Nevertheless, a computer analysis of the data8 indicated two ICM populations differing twofold with respect to X chromosome activity.) More tissue is available for analysis in post-implantation embryos, in which, on the above hypothesis, we would expect two active X chromosomes in the pluripotent epiblast region before gastrulation, but only one in the corresponding extra-embryonic ectoderm (a trophectoderm-derived tissue12) and primary endoderm (ICM-derived12, see Fig. 1). We report here that this is the case; we also show that inactivation is complete in the epiblast (fetal precursor) cells between 6.0 and 6.5 d of gestation at the onset of gastrulation.
35 schema:genre article
36 schema:isAccessibleForFree false
37 schema:isPartOf N6718f5c4723d4852b307aa7a66495919
38 Nf8bce6716e6944eb8876979cc29594ee
39 sg:journal.1018957
40 schema:keywords ICM cells10
41 above hypothesis
42 accuracy
43 adult female eutherian mammals
44 analysis
45 biochemical analysis
46 blastocysts
47 cases
48 cell mass
49 cell populations
50 cell types
51 cells
52 cells10
53 cells9
54 cellular differentiation
55 chromosome differentiation
56 chromosome dosage1
57 chromosome inactivation
58 chromosomes
59 chromosomes11
60 corresponding extra-embryonic ectoderm
61 data
62 different cell populations
63 different times
64 differentiation
65 dosage1
66 early mouse embryos
67 ectoderm
68 embryos
69 endoderm
70 epiblast cells
71 epiblast region
72 eutherian mammals
73 events
74 evidence
75 extra-embryonic ectoderm
76 female blastocysts
77 female eutherian mammals
78 female mouse embryos
79 females
80 gastrulation
81 genetic evidence
82 gestation
83 hypothesis
84 inactivation
85 inner cell mass
86 large number
87 limit
88 lines
89 males
90 mammals
91 mass
92 midcleavage stage4
93 more tissue
94 mouse embryos
95 number
96 onset
97 onset of gastrulation
98 outer sphere
99 pluripotent epiblast region
100 population
101 post-implantation embryos
102 presence
103 primary endoderm
104 region
105 respect
106 somatic cells
107 sphere
108 stage4
109 stem line
110 time
111 tissue
112 trophectoderm cells
113 trophectoderm cells9
114 types
115 schema:name Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos
116 schema:pagination 311-313
117 schema:productId N128dedff7e0b491db0ae5e53a09eeedd
118 Nc0bc269aae304bcf881f946ca91ec72d
119 Nc0c92d8c9a13450aaabb849d58f5dac3
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006848596
121 https://doi.org/10.1038/281311a0
122 schema:sdDatePublished 2021-12-01T19:03
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N33cc7d08febc4a77a4bd5aa9346df697
125 schema:url https://doi.org/10.1038/281311a0
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N000bd3c4801d41ac89a6415490054b3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Hypoxanthine Phosphoribosyltransferase
131 rdf:type schema:DefinedTerm
132 N000c1e529a814d2fa64b73fbdd4d367e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name X Chromosome
134 rdf:type schema:DefinedTerm
135 N0da45a7633ce47b793f6307ab79e5d32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Blastocyst
137 rdf:type schema:DefinedTerm
138 N128dedff7e0b491db0ae5e53a09eeedd schema:name pubmed_id
139 schema:value 551278
140 rdf:type schema:PropertyValue
141 N33cc7d08febc4a77a4bd5aa9346df697 schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 N37254888e85a4e8e8e9957a1508a194c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Adenine Phosphoribosyltransferase
145 rdf:type schema:DefinedTerm
146 N374fc8e3f78d4e0eaca329b879b39460 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Chimera
148 rdf:type schema:DefinedTerm
149 N6718f5c4723d4852b307aa7a66495919 schema:issueNumber 5729
150 rdf:type schema:PublicationIssue
151 N6808d535cc334cbe892aa769a7148f7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Endoderm
153 rdf:type schema:DefinedTerm
154 N6f1f1cadb7894845a691ced76ae8a90c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Pregnancy
156 rdf:type schema:DefinedTerm
157 N6fa394568b544fd2843cc0060757d1bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Male
159 rdf:type schema:DefinedTerm
160 N723bf93e07914a7a98de1d721e3ecf03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Cell Differentiation
162 rdf:type schema:DefinedTerm
163 N7464b21b7d7245d58106d54689067d31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Ectoderm
165 rdf:type schema:DefinedTerm
166 N75002ab0fd204763a3ed7f0a9172b88c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Female
168 rdf:type schema:DefinedTerm
169 N7b9bf87f239740d29ab0d93d2ebc7df1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Mice
171 rdf:type schema:DefinedTerm
172 Na588c32952ff425c8c92ddca535a5d1f rdf:first sg:person.062151047.85
173 rdf:rest rdf:nil
174 Nb2b5fca738dd4cc9949f92a05be2af7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Animals
176 rdf:type schema:DefinedTerm
177 Nc0bc269aae304bcf881f946ca91ec72d schema:name doi
178 schema:value 10.1038/281311a0
179 rdf:type schema:PropertyValue
180 Nc0c92d8c9a13450aaabb849d58f5dac3 schema:name dimensions_id
181 schema:value pub.1006848596
182 rdf:type schema:PropertyValue
183 Ncd5262488e8a423bac4aa5fa15852f06 rdf:first sg:person.0746606034.54
184 rdf:rest Na588c32952ff425c8c92ddca535a5d1f
185 Ncfa1b5b572454f5fbf14d6f7e0ff6ac0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Sex Chromosomes
187 rdf:type schema:DefinedTerm
188 Nefbb5e4b469e4799a2b7ee623e1b46ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Sex Factors
190 rdf:type schema:DefinedTerm
191 Nf8bce6716e6944eb8876979cc29594ee schema:volumeNumber 281
192 rdf:type schema:PublicationVolume
193 Nfcbc1b4fbe934acebffb5d9ad39060b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Gestational Age
195 rdf:type schema:DefinedTerm
196 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
197 schema:name Biological Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
200 schema:name Biochemistry and Cell Biology
201 rdf:type schema:DefinedTerm
202 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
203 schema:name Genetics
204 rdf:type schema:DefinedTerm
205 sg:journal.1018957 schema:issn 0028-0836
206 1476-4687
207 schema:name Nature
208 schema:publisher Springer Nature
209 rdf:type schema:Periodical
210 sg:person.062151047.85 schema:affiliation grid-institutes:grid.14105.31
211 schema:familyName Harper
212 schema:givenName Mary I.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.062151047.85
214 rdf:type schema:Person
215 sg:person.0746606034.54 schema:affiliation grid-institutes:grid.14105.31
216 schema:familyName Monk
217 schema:givenName Marilyn
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746606034.54
219 rdf:type schema:Person
220 sg:pub.10.1007/978-1-4757-0659-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018497554
221 https://doi.org/10.1007/978-1-4757-0659-8_3
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/bf01538668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006795687
224 https://doi.org/10.1007/bf01538668
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/231385a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021372942
227 https://doi.org/10.1038/231385a0
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/239087a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024703623
230 https://doi.org/10.1038/239087a0
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/256640a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040396760
233 https://doi.org/10.1038/256640a0
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/262580a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002661830
236 https://doi.org/10.1038/262580a0
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/267838a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031235424
239 https://doi.org/10.1038/267838a0
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/270599a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028322312
242 https://doi.org/10.1038/270599a0
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/271329a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022315500
245 https://doi.org/10.1038/271329a0
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/274500a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043684925
248 https://doi.org/10.1038/274500a0
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/274503a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031353170
251 https://doi.org/10.1038/274503a0
252 rdf:type schema:CreativeWork
253 grid-institutes:grid.14105.31 schema:alternateName MRC Mammalian Development Unit, Wolfson House, 4 Stephenson Way, NW1, London, UK
254 schema:name MRC Mammalian Development Unit, Wolfson House, 4 Stephenson Way, NW1, London, UK
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...