Quantum error correction for communication with linear optics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-07-01

AUTHORS

Samuel L. Braunstein

ABSTRACT

Improving the signal-to-noise ratio in optical communication systems is a fundamental requirement for cost-effective data transmission. This is particularly important for the transmission of noise-intolerant quantum states: excess noise at the quantum level destroys the coherence of the states, rendering classical error correction or amplifier-based schemes1 useless for quantum communication. Only quantum error correction2,3 can remove the effects of noise without corrupting the fragile superpositions of quantum states. But difficulties arise in the practical implementation of such a correction process because nonlinear operations4 have been thought to be required, greatly reducing the efficiency of any optical scheme. Here I report an efficient, compact scheme involving only linear optical elements and feedback, which performs error correction for both quantum and classical noise. In the classical case, the noise penalty incurred is no worse than for ideal amplification. But for low-noise quantum optical communication, this penalty may be eliminated entirely. This quantum error-correction scheme may thus find application in quantum cryptographic networks5,6,7 (where low noise is equivalent to high security), possibly extending their range far beyond limits imposed by system losses7. More... »

PAGES

47-49

References to SciGraph publications

  • 1983-11. Squeezed states of light in NATURE
  • 1982-10. A single quantum cannot be cloned in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/27850

    DOI

    http://dx.doi.org/10.1038/27850

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037509290


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "SEECS, University of Wales, LL57 1UT, Bangor, UK", 
              "id": "http://www.grid.ac/institutes/grid.8155.9", 
              "name": [
                "SEECS, University of Wales, LL57 1UT, Bangor, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Braunstein", 
            "givenName": "Samuel L.", 
            "id": "sg:person.0666766367.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/299802a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005824196", 
              "https://doi.org/10.1038/299802a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/306141a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022692282", 
              "https://doi.org/10.1038/306141a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-07-01", 
        "datePublishedReg": "1998-07-01", 
        "description": "Improving the signal-to-noise ratio in optical communication systems is a fundamental requirement for cost-effective data transmission. This is particularly important for the transmission of noise-intolerant quantum states: excess noise at the quantum level destroys the coherence of the states, rendering classical error correction or amplifier-based schemes1 useless for quantum communication. Only quantum error correction2,3 can remove the effects of noise without corrupting the fragile superpositions of quantum states. But difficulties arise in the practical implementation of such a correction process because nonlinear operations4 have been thought to be required, greatly reducing the efficiency of any optical scheme. Here I report an efficient, compact scheme involving only linear optical elements and feedback, which performs error correction for both quantum and classical noise. In the classical case, the noise penalty incurred is no worse than for ideal amplification. But for low-noise quantum optical communication, this penalty may be eliminated entirely. This quantum error-correction scheme may thus find application in quantum cryptographic networks5,6,7 (where low noise is equivalent to high security), possibly extending their range far beyond limits imposed by system losses7.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/27850", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6688", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "394"
          }
        ], 
        "keywords": [
          "quantum states", 
          "quantum error-correction schemes", 
          "quantum optical communications", 
          "linear optical elements", 
          "quantum error correction", 
          "classical error correction", 
          "optical communication systems", 
          "quantum communication", 
          "linear optics", 
          "optical scheme", 
          "classical noise", 
          "error-correction scheme", 
          "quantum level", 
          "optical elements", 
          "quantum error", 
          "optical communications", 
          "excess noise", 
          "ideal amplification", 
          "noise penalty", 
          "error correction", 
          "classical case", 
          "noise ratio", 
          "quantum", 
          "optics", 
          "state", 
          "correction", 
          "coherence", 
          "superposition", 
          "noise", 
          "compact scheme", 
          "effect of noise", 
          "communication systems", 
          "limit", 
          "practical implementation", 
          "scheme", 
          "fundamental requirement", 
          "signals", 
          "transmission", 
          "range", 
          "correction process", 
          "amplification", 
          "applications", 
          "efficiency", 
          "ratio", 
          "system", 
          "data transmission", 
          "process", 
          "elements", 
          "effect", 
          "error", 
          "penalty", 
          "communication", 
          "feedback", 
          "useless", 
          "cases", 
          "requirements", 
          "levels", 
          "difficulties", 
          "implementation", 
          "cost-effective data transmission", 
          "noise-intolerant quantum states", 
          "amplifier-based schemes1 useless", 
          "schemes1 useless", 
          "fragile superpositions", 
          "nonlinear operations4", 
          "operations4", 
          "low-noise quantum optical communication", 
          "system losses7", 
          "losses7"
        ], 
        "name": "Quantum error correction for communication with linear optics", 
        "pagination": "47-49", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037509290"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/27850"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/27850", 
          "https://app.dimensions.ai/details/publication/pub.1037509290"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_285.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/27850"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/27850'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/27850'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/27850'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/27850'


     

    This table displays all metadata directly associated to this object as RDF triples.

    139 TRIPLES      22 PREDICATES      97 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/27850 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 anzsrc-for:0206
    4 schema:author N0b1658e5ed2f46e7bd0bda440bbaf00a
    5 schema:citation sg:pub.10.1038/299802a0
    6 sg:pub.10.1038/306141a0
    7 schema:datePublished 1998-07-01
    8 schema:datePublishedReg 1998-07-01
    9 schema:description Improving the signal-to-noise ratio in optical communication systems is a fundamental requirement for cost-effective data transmission. This is particularly important for the transmission of noise-intolerant quantum states: excess noise at the quantum level destroys the coherence of the states, rendering classical error correction or amplifier-based schemes1 useless for quantum communication. Only quantum error correction2,3 can remove the effects of noise without corrupting the fragile superpositions of quantum states. But difficulties arise in the practical implementation of such a correction process because nonlinear operations4 have been thought to be required, greatly reducing the efficiency of any optical scheme. Here I report an efficient, compact scheme involving only linear optical elements and feedback, which performs error correction for both quantum and classical noise. In the classical case, the noise penalty incurred is no worse than for ideal amplification. But for low-noise quantum optical communication, this penalty may be eliminated entirely. This quantum error-correction scheme may thus find application in quantum cryptographic networks5,6,7 (where low noise is equivalent to high security), possibly extending their range far beyond limits imposed by system losses7.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N0ad932b9765d44b4977e4e7c4623d9dc
    14 Nc3e4f00017a44f299aa243d67f3c62c5
    15 sg:journal.1018957
    16 schema:keywords amplification
    17 amplifier-based schemes1 useless
    18 applications
    19 cases
    20 classical case
    21 classical error correction
    22 classical noise
    23 coherence
    24 communication
    25 communication systems
    26 compact scheme
    27 correction
    28 correction process
    29 cost-effective data transmission
    30 data transmission
    31 difficulties
    32 effect
    33 effect of noise
    34 efficiency
    35 elements
    36 error
    37 error correction
    38 error-correction scheme
    39 excess noise
    40 feedback
    41 fragile superpositions
    42 fundamental requirement
    43 ideal amplification
    44 implementation
    45 levels
    46 limit
    47 linear optical elements
    48 linear optics
    49 losses7
    50 low-noise quantum optical communication
    51 noise
    52 noise penalty
    53 noise ratio
    54 noise-intolerant quantum states
    55 nonlinear operations4
    56 operations4
    57 optical communication systems
    58 optical communications
    59 optical elements
    60 optical scheme
    61 optics
    62 penalty
    63 practical implementation
    64 process
    65 quantum
    66 quantum communication
    67 quantum error
    68 quantum error correction
    69 quantum error-correction schemes
    70 quantum level
    71 quantum optical communications
    72 quantum states
    73 range
    74 ratio
    75 requirements
    76 scheme
    77 schemes1 useless
    78 signals
    79 state
    80 superposition
    81 system
    82 system losses7
    83 transmission
    84 useless
    85 schema:name Quantum error correction for communication with linear optics
    86 schema:pagination 47-49
    87 schema:productId N01d7eadf4827417788701241ff91d1ee
    88 Nc5821187b59543a293bddc7c26b1dc55
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037509290
    90 https://doi.org/10.1038/27850
    91 schema:sdDatePublished 2021-11-01T18:02
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N9a852fdbc3c04824955945b306ec1679
    94 schema:url https://doi.org/10.1038/27850
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N01d7eadf4827417788701241ff91d1ee schema:name dimensions_id
    99 schema:value pub.1037509290
    100 rdf:type schema:PropertyValue
    101 N0ad932b9765d44b4977e4e7c4623d9dc schema:issueNumber 6688
    102 rdf:type schema:PublicationIssue
    103 N0b1658e5ed2f46e7bd0bda440bbaf00a rdf:first sg:person.0666766367.22
    104 rdf:rest rdf:nil
    105 N9a852fdbc3c04824955945b306ec1679 schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 Nc3e4f00017a44f299aa243d67f3c62c5 schema:volumeNumber 394
    108 rdf:type schema:PublicationVolume
    109 Nc5821187b59543a293bddc7c26b1dc55 schema:name doi
    110 schema:value 10.1038/27850
    111 rdf:type schema:PropertyValue
    112 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Physical Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Optical Physics
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Quantum Physics
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1018957 schema:issn 0028-0836
    122 1476-4687
    123 schema:name Nature
    124 schema:publisher Springer Nature
    125 rdf:type schema:Periodical
    126 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.8155.9
    127 schema:familyName Braunstein
    128 schema:givenName Samuel L.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
    130 rdf:type schema:Person
    131 sg:pub.10.1038/299802a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005824196
    132 https://doi.org/10.1038/299802a0
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1038/306141a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022692282
    135 https://doi.org/10.1038/306141a0
    136 rdf:type schema:CreativeWork
    137 grid-institutes:grid.8155.9 schema:alternateName SEECS, University of Wales, LL57 1UT, Bangor, UK
    138 schema:name SEECS, University of Wales, LL57 1UT, Bangor, UK
    139 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...