Escherichia coli resistance to β-lactam antibiotics through a decrease in the affinity of a target for lethality View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-08

AUTHORS

BRIAN G. SPRATT

ABSTRACT

CLINICAL isolates of bacteria that have gained resistance to β-lactam antibiotics (penicillins, cephalosporins and related compounds) often arise by the acquisition of a plasmid that produces a β-lactamase1,2. An increase in β-lactamase activity has also been shown to cause resistance in some mutants isolated in the laboratory3. In other cases, β-lactamase activity is not the cause of resistance and, at least in Gram-negative bacteria, alteration of the cell envelope resulting in decreased penetration of the antibiotic to the targets responsible for lethality in the cytoplasmic membrane has been proposed3,4. For several groups of antibiotics resistance has been shown to occur by a decrease in the affinity of the target for lethality for the antibiotic5–9 but, although this mechanism has been suggested as a possible cause of resistance to β-lactam antibiotics, no examples have been reported. The lethality targets for β-lactam antibiotics in Escherichia coli have recently been identified and I report here the characterisation of a mutant that has gained resistance to some β-lactams by a decrease in the affinity of such a target. More... »

PAGES

713-715

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/274713a0

DOI

http://dx.doi.org/10.1038/274713a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005903886

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/209344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amdinocillin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carrier Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cephalosporins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Penicillanic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Penicillin Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Penicillins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Genetics, University of Leicester, Leicester, UK", 
          "id": "http://www.grid.ac/institutes/grid.9918.9", 
          "name": [
            "Department of Genetics, University of Leicester, Leicester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "SPRATT", 
        "givenName": "BRIAN G.", 
        "id": "sg:person.01036303316.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036303316.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/222333a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016924231", 
          "https://doi.org/10.1038/222333a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/254516a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003617915", 
          "https://doi.org/10.1038/254516a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-08", 
    "datePublishedReg": "1978-08-01", 
    "description": "CLINICAL isolates of bacteria that have gained resistance to \u03b2-lactam antibiotics (penicillins, cephalosporins and related compounds) often arise by the acquisition of a plasmid that produces a \u03b2-lactamase1,2. An increase in \u03b2-lactamase activity has also been shown to cause resistance in some mutants isolated in the laboratory3. In other cases, \u03b2-lactamase activity is not the cause of resistance and, at least in Gram-negative bacteria, alteration of the cell envelope resulting in decreased penetration of the antibiotic to the targets responsible for lethality in the cytoplasmic membrane has been proposed3,4. For several groups of antibiotics resistance has been shown to occur by a decrease in the affinity of the target for lethality for the antibiotic5\u20139 but, although this mechanism has been suggested as a possible cause of resistance to \u03b2-lactam antibiotics, no examples have been reported. The lethality targets for \u03b2-lactam antibiotics in Escherichia coli have recently been identified and I report here the characterisation of a mutant that has gained resistance to some \u03b2-lactams by a decrease in the affinity of such a target.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/274713a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5672", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "274"
      }
    ], 
    "keywords": [
      "lactam antibiotics", 
      "lactamase activity", 
      "cause of resistance", 
      "Escherichia coli resistance", 
      "clinical isolates", 
      "coli resistance", 
      "antibiotic resistance", 
      "antibiotics", 
      "possible causes", 
      "cause", 
      "lethality", 
      "target", 
      "decrease", 
      "Gram-negative bacteria", 
      "resistance", 
      "activity", 
      "alterations", 
      "decreased penetration", 
      "affinity", 
      "group", 
      "isolates", 
      "Escherichia coli", 
      "bacteria", 
      "cases", 
      "increase", 
      "lactams", 
      "mechanism", 
      "plasmid", 
      "cytoplasmic membrane", 
      "cell envelope", 
      "membrane", 
      "mutants", 
      "coli", 
      "acquisition", 
      "penetration", 
      "envelope", 
      "laboratory3", 
      "characterisation", 
      "example"
    ], 
    "name": "Escherichia coli resistance to \u03b2-lactam antibiotics through a decrease in the affinity of a target for lethality", 
    "pagination": "713-715", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005903886"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/274713a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "209344"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/274713a0", 
      "https://app.dimensions.ai/details/publication/pub.1005903886"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_148.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/274713a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/274713a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/274713a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/274713a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/274713a0'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      77 URIs      67 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/274713a0 schema:about N046d2fb0812a405daf501d64350f6452
2 N5c71822b6a5b437a9d11fc22d9d9e972
3 N5df4d002f16c4bb28a1f879c4790ae8c
4 N601ecbeec0a14414ab0aeab8e9b3b736
5 N7716615d6ef44b2aafe3c31b6a025f17
6 Na1060d6c725e4134bd084610abe4c895
7 Na79f90dcf02147398bc7f07ab6c51a6e
8 Nb824f307f116491b89e93f0ad394c42c
9 Nc029de41b7d14dfb8adb6e44da05f63a
10 Nc56dc064242340ceaabf660dabf22cd7
11 anzsrc-for:11
12 anzsrc-for:1108
13 schema:author N1dff857418744a1ca30a5f6d5fab26af
14 schema:citation sg:pub.10.1038/222333a0
15 sg:pub.10.1038/254516a0
16 schema:datePublished 1978-08
17 schema:datePublishedReg 1978-08-01
18 schema:description CLINICAL isolates of bacteria that have gained resistance to β-lactam antibiotics (penicillins, cephalosporins and related compounds) often arise by the acquisition of a plasmid that produces a β-lactamase1,2. An increase in β-lactamase activity has also been shown to cause resistance in some mutants isolated in the laboratory3. In other cases, β-lactamase activity is not the cause of resistance and, at least in Gram-negative bacteria, alteration of the cell envelope resulting in decreased penetration of the antibiotic to the targets responsible for lethality in the cytoplasmic membrane has been proposed3,4. For several groups of antibiotics resistance has been shown to occur by a decrease in the affinity of the target for lethality for the antibiotic5–9 but, although this mechanism has been suggested as a possible cause of resistance to β-lactam antibiotics, no examples have been reported. The lethality targets for β-lactam antibiotics in Escherichia coli have recently been identified and I report here the characterisation of a mutant that has gained resistance to some β-lactams by a decrease in the affinity of such a target.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N229584dd5b984fc2b7fb7e9b458cd498
22 Ne524776293a74cfba5037f97a6446ff0
23 sg:journal.1018957
24 schema:keywords Escherichia coli
25 Escherichia coli resistance
26 Gram-negative bacteria
27 acquisition
28 activity
29 affinity
30 alterations
31 antibiotic resistance
32 antibiotics
33 bacteria
34 cases
35 cause
36 cause of resistance
37 cell envelope
38 characterisation
39 clinical isolates
40 coli
41 coli resistance
42 cytoplasmic membrane
43 decrease
44 decreased penetration
45 envelope
46 example
47 group
48 increase
49 isolates
50 laboratory3
51 lactam antibiotics
52 lactamase activity
53 lactams
54 lethality
55 mechanism
56 membrane
57 mutants
58 penetration
59 plasmid
60 possible causes
61 resistance
62 target
63 schema:name Escherichia coli resistance to β-lactam antibiotics through a decrease in the affinity of a target for lethality
64 schema:pagination 713-715
65 schema:productId N10c47106e62a4a50b5cdb4205ba485dd
66 Nc46ab631426a459780e2a3dfd7b2f90a
67 Nfd0361486e7c4e07ac035206f2de9c81
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005903886
69 https://doi.org/10.1038/274713a0
70 schema:sdDatePublished 2021-12-01T19:03
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N3ec17f02aa534178950441d6b80e8820
73 schema:url https://doi.org/10.1038/274713a0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N046d2fb0812a405daf501d64350f6452 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Carrier Proteins
79 rdf:type schema:DefinedTerm
80 N10c47106e62a4a50b5cdb4205ba485dd schema:name doi
81 schema:value 10.1038/274713a0
82 rdf:type schema:PropertyValue
83 N1dff857418744a1ca30a5f6d5fab26af rdf:first sg:person.01036303316.33
84 rdf:rest rdf:nil
85 N229584dd5b984fc2b7fb7e9b458cd498 schema:issueNumber 5672
86 rdf:type schema:PublicationIssue
87 N3ec17f02aa534178950441d6b80e8820 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N5c71822b6a5b437a9d11fc22d9d9e972 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Penicillanic Acid
91 rdf:type schema:DefinedTerm
92 N5df4d002f16c4bb28a1f879c4790ae8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Escherichia coli
94 rdf:type schema:DefinedTerm
95 N601ecbeec0a14414ab0aeab8e9b3b736 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Mutation
97 rdf:type schema:DefinedTerm
98 N7716615d6ef44b2aafe3c31b6a025f17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Chromosome Mapping
100 rdf:type schema:DefinedTerm
101 Na1060d6c725e4134bd084610abe4c895 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Cephalosporins
103 rdf:type schema:DefinedTerm
104 Na79f90dcf02147398bc7f07ab6c51a6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Penicillin Resistance
106 rdf:type schema:DefinedTerm
107 Nb824f307f116491b89e93f0ad394c42c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Amdinocillin
109 rdf:type schema:DefinedTerm
110 Nc029de41b7d14dfb8adb6e44da05f63a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Penicillins
112 rdf:type schema:DefinedTerm
113 Nc46ab631426a459780e2a3dfd7b2f90a schema:name dimensions_id
114 schema:value pub.1005903886
115 rdf:type schema:PropertyValue
116 Nc56dc064242340ceaabf660dabf22cd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Temperature
118 rdf:type schema:DefinedTerm
119 Ne524776293a74cfba5037f97a6446ff0 schema:volumeNumber 274
120 rdf:type schema:PublicationVolume
121 Nfd0361486e7c4e07ac035206f2de9c81 schema:name pubmed_id
122 schema:value 209344
123 rdf:type schema:PropertyValue
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical Microbiology
129 rdf:type schema:DefinedTerm
130 sg:journal.1018957 schema:issn 0028-0836
131 1476-4687
132 schema:name Nature
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01036303316.33 schema:affiliation grid-institutes:grid.9918.9
136 schema:familyName SPRATT
137 schema:givenName BRIAN G.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036303316.33
139 rdf:type schema:Person
140 sg:pub.10.1038/222333a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016924231
141 https://doi.org/10.1038/222333a0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/254516a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003617915
144 https://doi.org/10.1038/254516a0
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.9918.9 schema:alternateName Department of Genetics, University of Leicester, Leicester, UK
147 schema:name Department of Genetics, University of Leicester, Leicester, UK
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...