Development to term of chimaeras between diploid parthenogenetic and fertilised embryos View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-12

AUTHORS

M. AZIM H. SURANI, SHEILA C. BARTON, MATTHEW H. KAUFMAN

ABSTRACT

PARTHENOGENETIC mouse embryos have the potential for extensive cellular proliferation as well as differentiation into various cell types1–3. But this potential has been realised only when parthenogenetic embryos have been transferred to extrauterine sites1, and in spontaneously occurring ovarian teratomas and teratocarcinomas of parthenogenetic origin2,3. The development of mammalian parthenogenetic embryos in utero is restricted, with no conclusive evidence that they can develop to term4,5. Several hypotheses have been proposed to account for their poor development. For example, deleterious recessive genes may affect the viability of their cells, possibly because of their extensive homozygosity2,5, or disorganised growth and limited life span may result from anomalies of cellular interactions5. But the extensive cellular proliferation and differentiation of parthenogenetically derived cells which occurs in extrauterine sites is not entirely consistent with these explanations, and indicates that parthenogenones probably have a relatively stable genetic constitution. Indeed, these studies stress the likely importance of cellular environment for cytodifferentiation, provided in this instance by the extrauterine host tissue. There is a precedent for supposing that if the environment is critical for cytodifferentiation, parthenogenetic cells should be able to form chimaeras with cells derived from fertilised embryos6. Teratocarcinoma cells7,8 and cells carrying known lethal alleles9,10 can develop into viable chimaeras when aggregated with cells from normal embryos. Previous attempts to achieve development to term of aggregation chimaeras between parthenogenetic and fertilised embryos were apparently unsuccessful11. We have introduced inner cell masses (ICMs) from diploid ,parthenogenetic embryos into intact fertilised mouse blastocysts, and we report here the development of a chimaera to term. More... »

PAGES

601-603

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/270601a0

DOI

http://dx.doi.org/10.1038/270601a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031027837

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/593382


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blastocyst", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chimera", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diploidy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ectogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fertilization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parthenogenesis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physiological Laboratory, University of Cambridge, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Physiological Laboratory, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "SURANI", 
        "givenName": "M. AZIM H.", 
        "id": "sg:person.01121607454.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121607454.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physiological Laboratory, University of Cambridge, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Physiological Laboratory, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "BARTON", 
        "givenName": "SHEILA C.", 
        "id": "sg:person.01123202640.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123202640.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anatomy, University of Cambridge, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Anatomy, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "KAUFMAN", 
        "givenName": "MATTHEW H.", 
        "id": "sg:person.0107641106.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0107641106.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/226165a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025810986", 
          "https://doi.org/10.1038/226165a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/265053a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021051085", 
          "https://doi.org/10.1038/265053a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/258620a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028143118", 
          "https://doi.org/10.1038/258620a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/264762a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014843506", 
          "https://doi.org/10.1038/264762a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/269515a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048824335", 
          "https://doi.org/10.1038/269515a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/258070a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028100579", 
          "https://doi.org/10.1038/258070a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1977-12", 
    "datePublishedReg": "1977-12-01", 
    "description": "PARTHENOGENETIC mouse embryos have the potential for extensive cellular proliferation as well as differentiation into various cell types1\u20133. But this potential has been realised only when parthenogenetic embryos have been transferred to extrauterine sites1, and in spontaneously occurring ovarian teratomas and teratocarcinomas of parthenogenetic origin2,3. The development of mammalian parthenogenetic embryos in utero is restricted, with no conclusive evidence that they can develop to term4,5. Several hypotheses have been proposed to account for their poor development. For example, deleterious recessive genes may affect the viability of their cells, possibly because of their extensive homozygosity2,5, or disorganised growth and limited life span may result from anomalies of cellular interactions5. But the extensive cellular proliferation and differentiation of parthenogenetically derived cells which occurs in extrauterine sites is not entirely consistent with these explanations, and indicates that parthenogenones probably have a relatively stable genetic constitution. Indeed, these studies stress the likely importance of cellular environment for cytodifferentiation, provided in this instance by the extrauterine host tissue. There is a precedent for supposing that if the environment is critical for cytodifferentiation, parthenogenetic cells should be able to form chimaeras with cells derived from fertilised embryos6. Teratocarcinoma cells7,8 and cells carrying known lethal alleles9,10 can develop into viable chimaeras when aggregated with cells from normal embryos. Previous attempts to achieve development to term of aggregation chimaeras between parthenogenetic and fertilised embryos were apparently unsuccessful11. We have introduced inner cell masses (ICMs) from diploid ,parthenogenetic embryos into intact fertilised mouse blastocysts, and we report here the development of a chimaera to term.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/270601a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5638", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "270"
      }
    ], 
    "keywords": [
      "inner cell mass", 
      "parthenogenetic embryos", 
      "Mammalian parthenogenetic embryos", 
      "parthenogenetic mouse embryos", 
      "extensive cellular proliferation", 
      "cellular proliferation", 
      "deleterious recessive genes", 
      "parthenogenetic cells", 
      "limited life span", 
      "viable chimaeras", 
      "mouse embryos", 
      "recessive gene", 
      "mouse blastocysts", 
      "cellular environment", 
      "fertilised embryos", 
      "genetic constitution", 
      "aggregation chimaeras", 
      "embryos", 
      "chimaeras", 
      "normal embryos", 
      "cell mass", 
      "likely importance", 
      "host tissue", 
      "diploid", 
      "life span", 
      "cells", 
      "differentiation", 
      "cytodifferentiation", 
      "teratocarcinoma", 
      "proliferation", 
      "genes", 
      "parthenogenones", 
      "blastocysts", 
      "poor development", 
      "development", 
      "growth", 
      "conclusive evidence", 
      "viability", 
      "types1", 
      "sites1", 
      "sites", 
      "tissue", 
      "environment", 
      "potential", 
      "previous attempts", 
      "hypothesis", 
      "span", 
      "importance", 
      "evidence", 
      "mass", 
      "ovarian teratoma", 
      "teratoma", 
      "study", 
      "explanation", 
      "utero", 
      "constitution", 
      "example", 
      "attempt", 
      "instances", 
      "extrauterine sites", 
      "terms", 
      "precedent", 
      "anomalies", 
      "cell types1", 
      "extrauterine sites1", 
      "cellular interactions5", 
      "interactions5", 
      "stable genetic constitution", 
      "extrauterine host tissue", 
      "fertilised embryos6", 
      "embryos6", 
      "term of chimaeras"
    ], 
    "name": "Development to term of chimaeras between diploid parthenogenetic and fertilised embryos", 
    "pagination": "601-603", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031027837"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/270601a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "593382"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/270601a0", 
      "https://app.dimensions.ai/details/publication/pub.1031027837"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_146.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/270601a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/270601a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/270601a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/270601a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/270601a0'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      112 URIs      98 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/270601a0 schema:about N062a43a90e16435dacc3b24288d72c4c
2 N1d7a83c17aad43e79b07d5036fddf1f2
3 N1fa7d3cfde6b4092b13af82311ed190e
4 N251c815412a6418d8cd18294895a6592
5 N3eefa189f1374792b53bb15dc41b92dd
6 N6c5f2ac1e8cb4c9888087d5af942bd87
7 Nace2da4bbc7d4493b1e56235d47caa81
8 Nf5d4c992d6e54af6b34628d49e721b9e
9 anzsrc-for:06
10 anzsrc-for:0601
11 schema:author N3d023f0b2a9b49b69f0db93dbec1b0e2
12 schema:citation sg:pub.10.1038/226165a0
13 sg:pub.10.1038/258070a0
14 sg:pub.10.1038/258620a0
15 sg:pub.10.1038/264762a0
16 sg:pub.10.1038/265053a0
17 sg:pub.10.1038/269515a0
18 schema:datePublished 1977-12
19 schema:datePublishedReg 1977-12-01
20 schema:description PARTHENOGENETIC mouse embryos have the potential for extensive cellular proliferation as well as differentiation into various cell types1–3. But this potential has been realised only when parthenogenetic embryos have been transferred to extrauterine sites1, and in spontaneously occurring ovarian teratomas and teratocarcinomas of parthenogenetic origin2,3. The development of mammalian parthenogenetic embryos in utero is restricted, with no conclusive evidence that they can develop to term4,5. Several hypotheses have been proposed to account for their poor development. For example, deleterious recessive genes may affect the viability of their cells, possibly because of their extensive homozygosity2,5, or disorganised growth and limited life span may result from anomalies of cellular interactions5. But the extensive cellular proliferation and differentiation of parthenogenetically derived cells which occurs in extrauterine sites is not entirely consistent with these explanations, and indicates that parthenogenones probably have a relatively stable genetic constitution. Indeed, these studies stress the likely importance of cellular environment for cytodifferentiation, provided in this instance by the extrauterine host tissue. There is a precedent for supposing that if the environment is critical for cytodifferentiation, parthenogenetic cells should be able to form chimaeras with cells derived from fertilised embryos6. Teratocarcinoma cells7,8 and cells carrying known lethal alleles9,10 can develop into viable chimaeras when aggregated with cells from normal embryos. Previous attempts to achieve development to term of aggregation chimaeras between parthenogenetic and fertilised embryos were apparently unsuccessful11. We have introduced inner cell masses (ICMs) from diploid ,parthenogenetic embryos into intact fertilised mouse blastocysts, and we report here the development of a chimaera to term.
21 schema:genre article
22 schema:isAccessibleForFree false
23 schema:isPartOf N27e87592a48f4e49b7c5c36ff9636204
24 N7fe87a1ef69547788b1fae47500d061e
25 sg:journal.1018957
26 schema:keywords Mammalian parthenogenetic embryos
27 aggregation chimaeras
28 anomalies
29 attempt
30 blastocysts
31 cell mass
32 cell types1
33 cells
34 cellular environment
35 cellular interactions5
36 cellular proliferation
37 chimaeras
38 conclusive evidence
39 constitution
40 cytodifferentiation
41 deleterious recessive genes
42 development
43 differentiation
44 diploid
45 embryos
46 embryos6
47 environment
48 evidence
49 example
50 explanation
51 extensive cellular proliferation
52 extrauterine host tissue
53 extrauterine sites
54 extrauterine sites1
55 fertilised embryos
56 fertilised embryos6
57 genes
58 genetic constitution
59 growth
60 host tissue
61 hypothesis
62 importance
63 inner cell mass
64 instances
65 interactions5
66 life span
67 likely importance
68 limited life span
69 mass
70 mouse blastocysts
71 mouse embryos
72 normal embryos
73 ovarian teratoma
74 parthenogenetic cells
75 parthenogenetic embryos
76 parthenogenetic mouse embryos
77 parthenogenones
78 poor development
79 potential
80 precedent
81 previous attempts
82 proliferation
83 recessive gene
84 sites
85 sites1
86 span
87 stable genetic constitution
88 study
89 teratocarcinoma
90 teratoma
91 term of chimaeras
92 terms
93 tissue
94 types1
95 utero
96 viability
97 viable chimaeras
98 schema:name Development to term of chimaeras between diploid parthenogenetic and fertilised embryos
99 schema:pagination 601-603
100 schema:productId N5e126e46eb2c4488ad00c6739a0346aa
101 N6aca0d31d5f34e0a9639e1d9014b418f
102 Nfa92e1a7bf934786a37a79a8e95bc5a7
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031027837
104 https://doi.org/10.1038/270601a0
105 schema:sdDatePublished 2021-11-01T17:55
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N6b4f672c91234e2399b74efeef3eb164
108 schema:url https://doi.org/10.1038/270601a0
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N062a43a90e16435dacc3b24288d72c4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Ectogenesis
114 rdf:type schema:DefinedTerm
115 N1d7a83c17aad43e79b07d5036fddf1f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Chimera
117 rdf:type schema:DefinedTerm
118 N1fa7d3cfde6b4092b13af82311ed190e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Parthenogenesis
120 rdf:type schema:DefinedTerm
121 N251c815412a6418d8cd18294895a6592 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Mice
123 rdf:type schema:DefinedTerm
124 N27e87592a48f4e49b7c5c36ff9636204 schema:volumeNumber 270
125 rdf:type schema:PublicationVolume
126 N3439cfebb4314e27a6c2e315ae834bf5 rdf:first sg:person.0107641106.21
127 rdf:rest rdf:nil
128 N3d023f0b2a9b49b69f0db93dbec1b0e2 rdf:first sg:person.01121607454.03
129 rdf:rest N7293dc4f928343fda742a8f253a9af8f
130 N3eefa189f1374792b53bb15dc41b92dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Animals
132 rdf:type schema:DefinedTerm
133 N5e126e46eb2c4488ad00c6739a0346aa schema:name dimensions_id
134 schema:value pub.1031027837
135 rdf:type schema:PropertyValue
136 N6aca0d31d5f34e0a9639e1d9014b418f schema:name doi
137 schema:value 10.1038/270601a0
138 rdf:type schema:PropertyValue
139 N6b4f672c91234e2399b74efeef3eb164 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 N6c5f2ac1e8cb4c9888087d5af942bd87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Fertilization
143 rdf:type schema:DefinedTerm
144 N7293dc4f928343fda742a8f253a9af8f rdf:first sg:person.01123202640.92
145 rdf:rest N3439cfebb4314e27a6c2e315ae834bf5
146 N7fe87a1ef69547788b1fae47500d061e schema:issueNumber 5638
147 rdf:type schema:PublicationIssue
148 Nace2da4bbc7d4493b1e56235d47caa81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Diploidy
150 rdf:type schema:DefinedTerm
151 Nf5d4c992d6e54af6b34628d49e721b9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Blastocyst
153 rdf:type schema:DefinedTerm
154 Nfa92e1a7bf934786a37a79a8e95bc5a7 schema:name pubmed_id
155 schema:value 593382
156 rdf:type schema:PropertyValue
157 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
158 schema:name Biological Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biochemistry and Cell Biology
162 rdf:type schema:DefinedTerm
163 sg:journal.1018957 schema:issn 0028-0836
164 1476-4687
165 schema:name Nature
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.0107641106.21 schema:affiliation grid-institutes:grid.5335.0
169 schema:familyName KAUFMAN
170 schema:givenName MATTHEW H.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0107641106.21
172 rdf:type schema:Person
173 sg:person.01121607454.03 schema:affiliation grid-institutes:grid.5335.0
174 schema:familyName SURANI
175 schema:givenName M. AZIM H.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121607454.03
177 rdf:type schema:Person
178 sg:person.01123202640.92 schema:affiliation grid-institutes:grid.5335.0
179 schema:familyName BARTON
180 schema:givenName SHEILA C.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123202640.92
182 rdf:type schema:Person
183 sg:pub.10.1038/226165a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025810986
184 https://doi.org/10.1038/226165a0
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/258070a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028100579
187 https://doi.org/10.1038/258070a0
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/258620a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028143118
190 https://doi.org/10.1038/258620a0
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/264762a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014843506
193 https://doi.org/10.1038/264762a0
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/265053a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021051085
196 https://doi.org/10.1038/265053a0
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/269515a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048824335
199 https://doi.org/10.1038/269515a0
200 rdf:type schema:CreativeWork
201 grid-institutes:grid.5335.0 schema:alternateName Department of Anatomy, University of Cambridge, Cambridge, UK
202 Physiological Laboratory, University of Cambridge, Cambridge, UK
203 schema:name Department of Anatomy, University of Cambridge, Cambridge, UK
204 Physiological Laboratory, University of Cambridge, Cambridge, UK
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...