Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-10

AUTHORS

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel

ABSTRACT

Solar cells based on dye-sensitized mesoporous films of TiO2 arelow-cost alternatives to conventional solid-state devices1. Impressive solar-to-electrical energy conversion efficiencies have been achieved with such films when used in conjunction with liquid electrolytes2. Practical advantages may be gained by the replacement of the liquid electrolyte with a solid charge-transport material. Inorganic p-type semiconductors3,4 and organic materials5,6,7,8,9 have been tested in this regard, but in all cases the incident monochromatic photon-to-electron conversion efficiency remained low. Here we describe a dye-sensitized heterojunction of TiO2 with the amorphous organic hole-transport material 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (OMeTAD; refs. 10 and 11). Photoinduced charge-carrier generation at the heterojunction is very efficient. A solar cell based on OMeTAD converts photons to electric current with a high yield of 33%. More... »

PAGES

583-585

Journal

TITLE

Nature

ISSUE

6702

VOLUME

395

Related Patents

  • Photovoltaic Cell
  • Doped Organic Semiconductor Material
  • A Photovoltaic Material Including A Fiber Core Having An Outer Surface, A Light-Transmissive Electrical Conductor, A Photosensitized Nanomatrix Material, And A Charge Carrier Material
  • Method For Manufacturing A Nanostructured Inorganic/Organic Heterojunction Solar Cell
  • Heterocyclic Radical Or Diradical, The Dimers, Oligomers, Polymers, Dispiro Compounds And Polycycles Thereof, The Use Thereof, Organic Semiconductive Material And Electronic Or Optoelectronic Component
  • Photoelectric Conversion Element
  • Recovering Performance Of Degraded Solar Cells With Electrical Pulses
  • Ultrasonic Slitting Of Photovoltaic Cells And Modules
  • Organic Compound, Semiconductor Film Electrode Employing The Organic Compound, Photoelectric Conversion Element Employing The Organic Compound, And Photoelectrochemical Solar Cell Employing The Organic Compound
  • Low Temperature Interconnection Of Nanoparticles
  • Methods Of Scoring For Fabricating Interconnected Photovoltaic Cells
  • Sensitizing Complexes, Process For The Preparation Thereof, Semiconductive Inorganic/Organic Hybrid Material Comprising Them, And Photovoltaic Cell Comprising Said Material
  • Photo-Electro-Refining Of Bio-Oil To Biofuel And Hydrogen
  • Optoelectronic Device Comprising Porous Scaffold Material And Perovskites
  • Optoelectronic Device Comprising Perovskites
  • Solid State Heterojunction And Solid State Sensitized Photovoltaic Cell
  • Dye-Sensitized Solar Cell And Method For Manufacturing The Same
  • Methods Of Scoring For Fabricating Interconnected Photovoltaic Cells
  • Dye-Sensitized Solar Cell And Method For Manufacturing The Same
  • Quaternary Oxides And Catalysts Containing Quaternary Oxides
  • Hole Transporting Agents And Photoelectric Conversion Device Comprising The Same
  • Organic Photosensitive Optoelectronic Device With An Exciton Blocking Layer
  • Quinoid Compounds And Their Use In Semiconducting Matrix Materials, Electronic And Optoelectronic Structural Elements
  • Optoelectronic Device Comprising Perovskites
  • Quaternary Oxides And Catalysts Containing Quaternary Oxides
  • Doped Organic Semiconductor Material
  • High Performance Perovskite-Sensitized Mesoscopic Solar Cells
  • Photovoltaic Powered Multimedia Greeting Cards And Smart Cards
  • Heterocyclic Radical Or Diradical, The Dimers, Oligomers, Polymers, Dispiro Compounds And Polycycles Thereof, The Use Thereof, Organic Semiconductive Material And Electronic Or Optoelectronic Component
  • Gel Electrolytes For Dye Sensitized Solar Cells
  • Metal Complexes For Use As Dopants And Other Uses
  • Quinoid Compounds And Their Use In Semiconducting Matrix Materials, Electronic And Optoelectronic Structural Elements
  • Oxocarbon-, Pseudooxocarbon- And Radialene Compounds And Their Use
  • Oxocarbon-, Pseudooxocarbon- And Radialene Compounds And Their Use
  • Improved Redox Couple For Electrochemical And Optoelectronic Devices
  • Use Of Rylene Derivatives As Photosensitizers In Solar Cells
  • Apparatus And Method For Photovoltaic Energy Production Based On Internal Charge Emission In A Solid-State Heterostructure
  • Optoelectronic Device
  • Methods For Making Perovskite Solar Cells Having Improved Hole-Transport Layers
  • Optoelectronic Devices With Organometal Perovskites With Mixed Anions
  • Enhanced External Quantum Efficiency Through Increased Thickness; Reflection; Photoconductivity; Solar Cells
  • Fibril Solar Cell And Method Of Manufacture
  • Oxocarbon-, Pseudooxocarbon- And Radialene Compounds And Their Use
  • Solid State Heterojunction Device
  • Self-Assembled Organic Monolayer Hybrid Materials And Methods Thereof
  • Flexible Photovoltaically Powered Display, Which May Be Utilized In A Wide Variety Of Display Contexts Including Retail Shelf Systems, Is Described; Photovoltaic Cell Is Preferably Activated By Ambient Light (E.G., Fluorescent Or Incandescent)
  • Use Of Heterocyclic Radicals For Doping Organic Semiconductors
  • Oxocarbon-, Pseudooxocarbon- And Radialene Compounds And Their Use
  • Imidazole Derivatives And Their Use Of Dopants For Doping Organic Semiconductor Matrix Material
  • Photoelectric Conversion Element And Solar Cell
  • Organic Photosensitive Optoelectronic Devices With Transparent Electrodes
  • Oxocarbon-, Pseudooxocarbon- And Radialene Compounds And Their Use
  • Photovoltaic Cells Incorporating Rigid Substrates
  • Metal Complexes For Use As Dopants And Other Uses
  • Optoelectronic Device Comprising Porous Scaffold Material And Perovskites
  • Oxocarbon-, Pseudooxocarbon- And Radialene Compounds And Their Use
  • Photovoltaic Devices Comprising Ion Pairs
  • Solid P-Semiconductors May Also Be Used In The Inventive Dye-Sensitized Solar Cells Without Increasing The Cell Resistance, Since The Rylene Derivatives Absorb Strongly And Therefore Require Only Thin N-Semiconductor Layers
  • Nano-Structured Photovoltaic Solar Cell And Related Methods
  • High Performance Perovskite-Sensitized Mesoscopic Solar Cells
  • Dye-Sensitized Solar Cells And Method Of Manufacture
  • Pyrido[3,2-H]Quinazolines And/Or 5,6-Dihydro Derivatives Thereof, A Method For The Production Thereof And Doped Organic Semiconductor Material Containing These
  • Hole Transporting Agents And Photoelectric Conversion Device Comprising The Same
  • Optical Detector And Method For Manufacturing The Same
  • Radialene Compounds And Their Use
  • Titanium Oxide Nanoparticle Includes Anatase Titanium Oxide, And May Be A Nanofiber Having A Minimum Dimension Less Than 200 Nanometers And Having An Aspect Ratio Greater Than 20:1. A Titanium Oxide Nanoparticle Including Anatase Titanium Oxide May Include A Dopant Metal And/Or A Dopant Nonmetal
  • Aryl-Substituted And/Or Heteroaryl-Substituted Main Group Element Halides And/Or Pseudohalides, Use Of Main Group Element Halides And/Or Pseudohalides, Organic Semiconducting Matrix Material, Electronic And Optoelectronic Components
  • Co-Sensitizers For Dye Sensitized Solar Cells
  • Improved Redox Couple For Electrochemical And Optoelectronic Devices
  • Photovoltaic Fibers
  • Optoelectronic Devices With Organometal Perovskites With Mixed Anions
  • Gel Electrolytes For Dye Sensitized Solar Cells
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/26936

    DOI

    http://dx.doi.org/10.1038/26936

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008086076


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bach", 
            "givenName": "U.", 
            "id": "sg:person.01245463537.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245463537.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science Laboratories, Sony International (Europe) GmbH, Stuttgarter Strasse 106, 70736, Fellbach, Germany", 
              "id": "http://www.grid.ac/institutes/grid.426403.7", 
              "name": [
                "Hoechst Research & Technology Deutchland GmbH & Co. KG, Industriepark H\u00f6chst, D-65926, Frankfurt, Germany", 
                "Materials Science Laboratories, Sony International (Europe) GmbH, Stuttgarter Strasse 106, 70736, Fellbach, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lupo", 
            "givenName": "D.", 
            "id": "sg:person.011031472215.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031472215.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Comte", 
            "givenName": "P.", 
            "id": "sg:person.01264426337.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264426337.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moser", 
            "givenName": "J. E.", 
            "id": "sg:person.01006033747.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006033747.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Polymerforschung, D-55128, Mainz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419547.a", 
              "name": [
                "Max-Planck-Institut f\u00fcr Polymerforschung, D-55128, Mainz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weiss\u00f6rtel", 
            "givenName": "F.", 
            "id": "sg:person.015222461027.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015222461027.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Polymerforschung, D-55128, Mainz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419547.a", 
              "name": [
                "Max-Planck-Institut f\u00fcr Polymerforschung, D-55128, Mainz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salbeck", 
            "givenName": "J.", 
            "id": "sg:person.016144577351.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016144577351.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hoechst Research & Technology Deutchland GmbH & Co. KG, Industriepark H\u00f6chst, D-65926, Frankfurt, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hoechst Research & Technology Deutchland GmbH & Co. KG, Industriepark H\u00f6chst, D-65926, Frankfurt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spreitzer", 
            "givenName": "H.", 
            "id": "sg:person.014075024575.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014075024575.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gr\u00e4tzel", 
            "givenName": "M.", 
            "id": "sg:person.0704074447.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704074447.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/353737a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014356537", 
              "https://doi.org/10.1038/353737a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/376498a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011979108", 
              "https://doi.org/10.1038/376498a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-10", 
        "datePublishedReg": "1998-10-01", 
        "description": "Solar cells based on dye-sensitized mesoporous films of TiO2 arelow-cost alternatives to conventional solid-state devices1. Impressive solar-to-electrical energy conversion efficiencies have been achieved with such films when used in conjunction with liquid electrolytes2. Practical advantages may be gained by the replacement of the liquid electrolyte with a solid charge-transport material. Inorganic p-type semiconductors3,4 and organic materials5,6,7,8,9 have been tested in this regard, but in all cases the incident monochromatic photon-to-electron conversion efficiency remained low. Here we describe a dye-sensitized heterojunction of TiO2 with the amorphous organic hole-transport material 2,2\u2032,7,7\u2032-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9\u2032-spirobifluorene (OMeTAD; refs. 10 and 11). Photoinduced charge-carrier generation at the heterojunction is very efficient. A solar cell based on OMeTAD converts photons to electric current with a high yield of 33%.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/26936", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6702", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "395"
          }
        ], 
        "keywords": [
          "solar cells", 
          "conversion efficiency", 
          "electron conversion efficiency", 
          "organic hole transport materials", 
          "inorganic p-type", 
          "electrical energy conversion efficiency", 
          "hole transport material", 
          "dye-sensitized mesoporous film", 
          "energy conversion efficiency", 
          "impressive solar", 
          "charge transport materials", 
          "charge carrier generation", 
          "mesoporous films", 
          "such films", 
          "TiO2 solar cells", 
          "liquid electrolyte", 
          "p-type", 
          "incident monochromatic photon", 
          "dye-sensitized heterojunction", 
          "monochromatic photons", 
          "high photon", 
          "heterojunction", 
          "films", 
          "photons", 
          "p-methoxyphenyl", 
          "efficiency", 
          "materials", 
          "high yields", 
          "Solar", 
          "TiO2", 
          "spirobifluorene", 
          "current", 
          "electrolyte", 
          "organics", 
          "practical advantages", 
          "generation", 
          "advantages", 
          "yield", 
          "cells", 
          "alternative", 
          "conjunction", 
          "replacement", 
          "cases", 
          "regard"
        ], 
        "name": "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies", 
        "pagination": "583-585", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008086076"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/26936"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/26936", 
          "https://app.dimensions.ai/details/publication/pub.1008086076"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_294.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/26936"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/26936'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/26936'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/26936'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/26936'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      73 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/26936 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 schema:author N3e1f649a4ba348d2b0408e7a3cee56ba
    6 schema:citation sg:pub.10.1038/353737a0
    7 sg:pub.10.1038/376498a0
    8 schema:datePublished 1998-10
    9 schema:datePublishedReg 1998-10-01
    10 schema:description Solar cells based on dye-sensitized mesoporous films of TiO2 arelow-cost alternatives to conventional solid-state devices1. Impressive solar-to-electrical energy conversion efficiencies have been achieved with such films when used in conjunction with liquid electrolytes2. Practical advantages may be gained by the replacement of the liquid electrolyte with a solid charge-transport material. Inorganic p-type semiconductors3,4 and organic materials5,6,7,8,9 have been tested in this regard, but in all cases the incident monochromatic photon-to-electron conversion efficiency remained low. Here we describe a dye-sensitized heterojunction of TiO2 with the amorphous organic hole-transport material 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (OMeTAD; refs. 10 and 11). Photoinduced charge-carrier generation at the heterojunction is very efficient. A solar cell based on OMeTAD converts photons to electric current with a high yield of 33%.
    11 schema:genre article
    12 schema:isAccessibleForFree false
    13 schema:isPartOf Nc36d5a7cb47248ec8de25b845e7adf2e
    14 Nc8a26b77f46f4deb824396508dc615df
    15 sg:journal.1018957
    16 schema:keywords Solar
    17 TiO2
    18 TiO2 solar cells
    19 advantages
    20 alternative
    21 cases
    22 cells
    23 charge carrier generation
    24 charge transport materials
    25 conjunction
    26 conversion efficiency
    27 current
    28 dye-sensitized heterojunction
    29 dye-sensitized mesoporous film
    30 efficiency
    31 electrical energy conversion efficiency
    32 electrolyte
    33 electron conversion efficiency
    34 energy conversion efficiency
    35 films
    36 generation
    37 heterojunction
    38 high photon
    39 high yields
    40 hole transport material
    41 impressive solar
    42 incident monochromatic photon
    43 inorganic p-type
    44 liquid electrolyte
    45 materials
    46 mesoporous films
    47 monochromatic photons
    48 organic hole transport materials
    49 organics
    50 p-methoxyphenyl
    51 p-type
    52 photons
    53 practical advantages
    54 regard
    55 replacement
    56 solar cells
    57 spirobifluorene
    58 such films
    59 yield
    60 schema:name Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies
    61 schema:pagination 583-585
    62 schema:productId N0abec706f80641ab82a818e9f736d9fb
    63 Nf826ccf069744b9fb6026c35f620b5f1
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008086076
    65 https://doi.org/10.1038/26936
    66 schema:sdDatePublished 2022-09-02T15:48
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher Nd4a5880982f047c4a76d45f3ff1fe824
    69 schema:url https://doi.org/10.1038/26936
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N0abec706f80641ab82a818e9f736d9fb schema:name doi
    74 schema:value 10.1038/26936
    75 rdf:type schema:PropertyValue
    76 N3e1f649a4ba348d2b0408e7a3cee56ba rdf:first sg:person.01245463537.23
    77 rdf:rest N74edd220a1d14eec8311dc664f4fecd7
    78 N4cbd2a5ca3f94986ae42dba07b122469 rdf:first sg:person.014075024575.64
    79 rdf:rest Nc694291c28934d5b99a62e1076b4af06
    80 N74edd220a1d14eec8311dc664f4fecd7 rdf:first sg:person.011031472215.70
    81 rdf:rest Ndff32807003942ff98ca74d665ab1616
    82 N78321d7db3d649098964c69ed2e44642 rdf:first sg:person.01006033747.04
    83 rdf:rest Nf34b4752991a4193bcf67a2eeb267a51
    84 Nc36d5a7cb47248ec8de25b845e7adf2e schema:issueNumber 6702
    85 rdf:type schema:PublicationIssue
    86 Nc694291c28934d5b99a62e1076b4af06 rdf:first sg:person.0704074447.46
    87 rdf:rest rdf:nil
    88 Nc8a26b77f46f4deb824396508dc615df schema:volumeNumber 395
    89 rdf:type schema:PublicationVolume
    90 Nd4a5880982f047c4a76d45f3ff1fe824 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 Ndff32807003942ff98ca74d665ab1616 rdf:first sg:person.01264426337.70
    93 rdf:rest N78321d7db3d649098964c69ed2e44642
    94 Ne0372f5b1e204cf8b3e3469127f72892 rdf:first sg:person.016144577351.46
    95 rdf:rest N4cbd2a5ca3f94986ae42dba07b122469
    96 Nf34b4752991a4193bcf67a2eeb267a51 rdf:first sg:person.015222461027.39
    97 rdf:rest Ne0372f5b1e204cf8b3e3469127f72892
    98 Nf826ccf069744b9fb6026c35f620b5f1 schema:name dimensions_id
    99 schema:value pub.1008086076
    100 rdf:type schema:PropertyValue
    101 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Chemical Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Physical Chemistry (incl. Structural)
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Engineering
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Materials Engineering
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1018957 schema:issn 0028-0836
    114 1476-4687
    115 schema:name Nature
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.01006033747.04 schema:affiliation grid-institutes:grid.5333.6
    119 schema:familyName Moser
    120 schema:givenName J. E.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006033747.04
    122 rdf:type schema:Person
    123 sg:person.011031472215.70 schema:affiliation grid-institutes:grid.426403.7
    124 schema:familyName Lupo
    125 schema:givenName D.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031472215.70
    127 rdf:type schema:Person
    128 sg:person.01245463537.23 schema:affiliation grid-institutes:grid.5333.6
    129 schema:familyName Bach
    130 schema:givenName U.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245463537.23
    132 rdf:type schema:Person
    133 sg:person.01264426337.70 schema:affiliation grid-institutes:grid.5333.6
    134 schema:familyName Comte
    135 schema:givenName P.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264426337.70
    137 rdf:type schema:Person
    138 sg:person.014075024575.64 schema:affiliation grid-institutes:None
    139 schema:familyName Spreitzer
    140 schema:givenName H.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014075024575.64
    142 rdf:type schema:Person
    143 sg:person.015222461027.39 schema:affiliation grid-institutes:grid.419547.a
    144 schema:familyName Weissörtel
    145 schema:givenName F.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015222461027.39
    147 rdf:type schema:Person
    148 sg:person.016144577351.46 schema:affiliation grid-institutes:grid.419547.a
    149 schema:familyName Salbeck
    150 schema:givenName J.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016144577351.46
    152 rdf:type schema:Person
    153 sg:person.0704074447.46 schema:affiliation grid-institutes:grid.5333.6
    154 schema:familyName Grätzel
    155 schema:givenName M.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704074447.46
    157 rdf:type schema:Person
    158 sg:pub.10.1038/353737a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014356537
    159 https://doi.org/10.1038/353737a0
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/376498a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011979108
    162 https://doi.org/10.1038/376498a0
    163 rdf:type schema:CreativeWork
    164 grid-institutes:None schema:alternateName Hoechst Research & Technology Deutchland GmbH & Co. KG, Industriepark Höchst, D-65926, Frankfurt, Germany
    165 schema:name Hoechst Research & Technology Deutchland GmbH & Co. KG, Industriepark Höchst, D-65926, Frankfurt, Germany
    166 rdf:type schema:Organization
    167 grid-institutes:grid.419547.a schema:alternateName Max-Planck-Institut für Polymerforschung, D-55128, Mainz, Germany
    168 schema:name Max-Planck-Institut für Polymerforschung, D-55128, Mainz, Germany
    169 rdf:type schema:Organization
    170 grid-institutes:grid.426403.7 schema:alternateName Materials Science Laboratories, Sony International (Europe) GmbH, Stuttgarter Strasse 106, 70736, Fellbach, Germany
    171 schema:name Hoechst Research & Technology Deutchland GmbH & Co. KG, Industriepark Höchst, D-65926, Frankfurt, Germany
    172 Materials Science Laboratories, Sony International (Europe) GmbH, Stuttgarter Strasse 106, 70736, Fellbach, Germany
    173 rdf:type schema:Organization
    174 grid-institutes:grid.5333.6 schema:alternateName Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
    175 schema:name Institute of Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...