Expression of α-galactosidase in preimplantation mouse embryos View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-06

AUTHORS

DAVID A. ADLER, JOHN D. WEST, VERNE M. CHAPMAN

ABSTRACT

THE most widely accepted model for X-chromosome dosage compensation in female mammals is the single-active X hypothesis (Lyon hypothesis)1. X-Chromosome dosage compensation probably occurs at about the time of implantation of the embryo into the uterus2,3 but it is not known whether this arises by a process of X-chromosome inactivation or by X-chromosome activation4. There is now good evidence for the expression of the embryonic genome during preimplantation development5–10 and Lyon2,3 has reviewed the evidence suggesting that X chromosomes are also expressed during this period. This includes both indirect observations11–13 and the more direct experiments with the X-linked enzyme hypoxanthine guanine phosphoribosyl-transferase (HPRT) (ref. 10). We have examined the expression of another X-linked enzyme, α-galactosidase14–15 and report here a 300-fold increase in activity during preimplantation development. This is probably due to the expression of embryonic X chromosomes. More... »

PAGES

838-839

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/267838a0

DOI

http://dx.doi.org/10.1038/267838a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031235424

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/895843


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blastocyst", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Embryo, Mammalian", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Embryonic Development", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Galactosidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Linkage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Chromosomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zygote", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology, Roswell Park Memorial Institute, 14263, Buffalo, New York", 
          "id": "http://www.grid.ac/institutes/grid.240614.5", 
          "name": [
            "Department of Molecular Biology, Roswell Park Memorial Institute, 14263, Buffalo, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "ADLER", 
        "givenName": "DAVID A.", 
        "id": "sg:person.01003160223.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003160223.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology, Roswell Park Memorial Institute, 14263, Buffalo, New York", 
          "id": "http://www.grid.ac/institutes/grid.240614.5", 
          "name": [
            "Department of Molecular Biology, Roswell Park Memorial Institute, 14263, Buffalo, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "WEST", 
        "givenName": "JOHN D.", 
        "id": "sg:person.012441551542.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012441551542.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology, Roswell Park Memorial Institute, 14263, Buffalo, New York", 
          "id": "http://www.grid.ac/institutes/grid.240614.5", 
          "name": [
            "Department of Molecular Biology, Roswell Park Memorial Institute, 14263, Buffalo, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "CHAPMAN", 
        "givenName": "VERNE M.", 
        "id": "sg:person.011060012177.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011060012177.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01538668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006795687", 
          "https://doi.org/10.1007/bf01538668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00485346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001184567", 
          "https://doi.org/10.1007/bf00485346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/190372a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048297848", 
          "https://doi.org/10.1038/190372a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00487448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034840438", 
          "https://doi.org/10.1007/bf00487448"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1977-06", 
    "datePublishedReg": "1977-06-01", 
    "description": "THE most widely accepted model for X-chromosome dosage compensation in female mammals is the single-active X hypothesis (Lyon hypothesis)1. X-Chromosome dosage compensation probably occurs at about the time of implantation of the embryo into the uterus2,3 but it is not known whether this arises by a process of X-chromosome inactivation or by X-chromosome activation4. There is now good evidence for the expression of the embryonic genome during preimplantation development5\u201310 and Lyon2,3 has reviewed the evidence suggesting that X chromosomes are also expressed during this period. This includes both indirect observations11\u201313 and the more direct experiments with the X-linked enzyme hypoxanthine guanine phosphoribosyl-transferase (HPRT) (ref. 10). We have examined the expression of another X-linked enzyme, \u03b1-galactosidase14\u201315 and report here a 300-fold increase in activity during preimplantation development. This is probably due to the expression of embryonic X chromosomes.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/267838a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5614", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "267"
      }
    ], 
    "keywords": [
      "chromosome dosage compensation", 
      "dosage compensation", 
      "hypoxanthine-guanine phosphoribosyl-transferase", 
      "preimplantation mouse embryos", 
      "embryonic genome", 
      "chromosome inactivation", 
      "preimplantation development", 
      "mouse embryos", 
      "female mammals", 
      "phosphoribosyl transferase", 
      "chromosomes", 
      "embryos", 
      "expression", 
      "genome", 
      "mammals", 
      "enzyme", 
      "inactivation", 
      "direct experiments", 
      "galactosidase", 
      "time of implantation", 
      "evidence", 
      "activity", 
      "hypothesis", 
      "development", 
      "good evidence", 
      "process", 
      "experiments", 
      "increase", 
      "report", 
      "period", 
      "compensation", 
      "time", 
      "model", 
      "Lyon", 
      "implantation", 
      "chromosome activation4", 
      "activation4", 
      "preimplantation development5\u201310", 
      "development5\u201310", 
      "indirect observations11\u201313", 
      "observations11\u201313", 
      "enzyme hypoxanthine guanine phosphoribosyl-transferase", 
      "guanine phosphoribosyl-transferase", 
      "galactosidase14\u201315"
    ], 
    "name": "Expression of \u03b1-galactosidase in preimplantation mouse embryos", 
    "pagination": "838-839", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031235424"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/267838a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "895843"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/267838a0", 
      "https://app.dimensions.ai/details/publication/pub.1031235424"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_146.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/267838a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/267838a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/267838a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/267838a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/267838a0'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      88 URIs      76 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/267838a0 schema:about N0946e99f652e46e0bb30632993d3a9fe
2 N0994bffab9854770b55553b6d7a50e1f
3 N1b6cf582351f426e9ba9199a61484ac8
4 N267deb17d2a44157b82684caee3da28a
5 N454906b76eae45c69bbb395dcec920bc
6 N4b26bbe3c5c94cd59ed8c09fc87205f6
7 N5ca40e762919465dba56ff98c0b2a32a
8 N86701118333e47b7b5b5746ec4395a24
9 N9067e6add0934138ae5c8d02d597d492
10 N9c34e96f3d894f438f38e94ff7944b27
11 N9d8cf42a138c4537a46681efb650b3ac
12 Nb9b31fd3563f447a8fa9b5cd96090bed
13 Nc0fad65761fe40c1b5dfb43d0f77bab0
14 Nfd0600112e3f4a83b6b89fac4203e001
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author Nfd2801ee9d6544f8adae07488acfbf75
18 schema:citation sg:pub.10.1007/bf00485346
19 sg:pub.10.1007/bf00487448
20 sg:pub.10.1007/bf01538668
21 sg:pub.10.1038/190372a0
22 schema:datePublished 1977-06
23 schema:datePublishedReg 1977-06-01
24 schema:description THE most widely accepted model for X-chromosome dosage compensation in female mammals is the single-active X hypothesis (Lyon hypothesis)1. X-Chromosome dosage compensation probably occurs at about the time of implantation of the embryo into the uterus2,3 but it is not known whether this arises by a process of X-chromosome inactivation or by X-chromosome activation4. There is now good evidence for the expression of the embryonic genome during preimplantation development5–10 and Lyon2,3 has reviewed the evidence suggesting that X chromosomes are also expressed during this period. This includes both indirect observations11–13 and the more direct experiments with the X-linked enzyme hypoxanthine guanine phosphoribosyl-transferase (HPRT) (ref. 10). We have examined the expression of another X-linked enzyme, α-galactosidase14–15 and report here a 300-fold increase in activity during preimplantation development. This is probably due to the expression of embryonic X chromosomes.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N55a1d2ac1ded4a47b6a0eeb645675f49
28 Nc4cf944bee444f119660ab9a18649e8e
29 sg:journal.1018957
30 schema:keywords Lyon
31 activation4
32 activity
33 chromosome activation4
34 chromosome dosage compensation
35 chromosome inactivation
36 chromosomes
37 compensation
38 development
39 development5–10
40 direct experiments
41 dosage compensation
42 embryonic genome
43 embryos
44 enzyme
45 enzyme hypoxanthine guanine phosphoribosyl-transferase
46 evidence
47 experiments
48 expression
49 female mammals
50 galactosidase
51 galactosidase14–15
52 genome
53 good evidence
54 guanine phosphoribosyl-transferase
55 hypothesis
56 hypoxanthine-guanine phosphoribosyl-transferase
57 implantation
58 inactivation
59 increase
60 indirect observations11–13
61 mammals
62 model
63 mouse embryos
64 observations11–13
65 period
66 phosphoribosyl transferase
67 preimplantation development
68 preimplantation development5–10
69 preimplantation mouse embryos
70 process
71 report
72 time
73 time of implantation
74 schema:name Expression of α-galactosidase in preimplantation mouse embryos
75 schema:pagination 838-839
76 schema:productId N6965a797cd534adf96e020a09359a073
77 Ne66239c55a5244b0bb5a377fdbece114
78 Nfbd718711cba49c69477e235765f354c
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031235424
80 https://doi.org/10.1038/267838a0
81 schema:sdDatePublished 2022-01-01T18:01
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Ndf38cfccd9454e16957bd9d990259e58
84 schema:url https://doi.org/10.1038/267838a0
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N0946e99f652e46e0bb30632993d3a9fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Pregnancy, Animal
90 rdf:type schema:DefinedTerm
91 N0994bffab9854770b55553b6d7a50e1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Mice
93 rdf:type schema:DefinedTerm
94 N1b6cf582351f426e9ba9199a61484ac8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Animals
96 rdf:type schema:DefinedTerm
97 N23f468af469f4bdd934ca55e51d2618f rdf:first sg:person.012441551542.56
98 rdf:rest N463a0f0fe65c49a9b41757e9e26f72e0
99 N267deb17d2a44157b82684caee3da28a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Embryonic Development
101 rdf:type schema:DefinedTerm
102 N454906b76eae45c69bbb395dcec920bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Pregnancy
104 rdf:type schema:DefinedTerm
105 N463a0f0fe65c49a9b41757e9e26f72e0 rdf:first sg:person.011060012177.25
106 rdf:rest rdf:nil
107 N4b26bbe3c5c94cd59ed8c09fc87205f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Zygote
109 rdf:type schema:DefinedTerm
110 N55a1d2ac1ded4a47b6a0eeb645675f49 schema:volumeNumber 267
111 rdf:type schema:PublicationVolume
112 N5ca40e762919465dba56ff98c0b2a32a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Embryo, Mammalian
114 rdf:type schema:DefinedTerm
115 N6965a797cd534adf96e020a09359a073 schema:name dimensions_id
116 schema:value pub.1031235424
117 rdf:type schema:PropertyValue
118 N86701118333e47b7b5b5746ec4395a24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Blastocyst
120 rdf:type schema:DefinedTerm
121 N9067e6add0934138ae5c8d02d597d492 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Genetic Linkage
123 rdf:type schema:DefinedTerm
124 N9c34e96f3d894f438f38e94ff7944b27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Male
126 rdf:type schema:DefinedTerm
127 N9d8cf42a138c4537a46681efb650b3ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Galactosidases
129 rdf:type schema:DefinedTerm
130 Nb9b31fd3563f447a8fa9b5cd96090bed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Genes
132 rdf:type schema:DefinedTerm
133 Nc0fad65761fe40c1b5dfb43d0f77bab0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Female
135 rdf:type schema:DefinedTerm
136 Nc4cf944bee444f119660ab9a18649e8e schema:issueNumber 5614
137 rdf:type schema:PublicationIssue
138 Ndf38cfccd9454e16957bd9d990259e58 schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Ne66239c55a5244b0bb5a377fdbece114 schema:name pubmed_id
141 schema:value 895843
142 rdf:type schema:PropertyValue
143 Nfbd718711cba49c69477e235765f354c schema:name doi
144 schema:value 10.1038/267838a0
145 rdf:type schema:PropertyValue
146 Nfd0600112e3f4a83b6b89fac4203e001 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Sex Chromosomes
148 rdf:type schema:DefinedTerm
149 Nfd2801ee9d6544f8adae07488acfbf75 rdf:first sg:person.01003160223.11
150 rdf:rest N23f468af469f4bdd934ca55e51d2618f
151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
152 schema:name Biological Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
155 schema:name Genetics
156 rdf:type schema:DefinedTerm
157 sg:journal.1018957 schema:issn 0028-0836
158 1476-4687
159 schema:name Nature
160 schema:publisher Springer Nature
161 rdf:type schema:Periodical
162 sg:person.01003160223.11 schema:affiliation grid-institutes:grid.240614.5
163 schema:familyName ADLER
164 schema:givenName DAVID A.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003160223.11
166 rdf:type schema:Person
167 sg:person.011060012177.25 schema:affiliation grid-institutes:grid.240614.5
168 schema:familyName CHAPMAN
169 schema:givenName VERNE M.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011060012177.25
171 rdf:type schema:Person
172 sg:person.012441551542.56 schema:affiliation grid-institutes:grid.240614.5
173 schema:familyName WEST
174 schema:givenName JOHN D.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012441551542.56
176 rdf:type schema:Person
177 sg:pub.10.1007/bf00485346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001184567
178 https://doi.org/10.1007/bf00485346
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/bf00487448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034840438
181 https://doi.org/10.1007/bf00487448
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/bf01538668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006795687
184 https://doi.org/10.1007/bf01538668
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/190372a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048297848
187 https://doi.org/10.1038/190372a0
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.240614.5 schema:alternateName Department of Molecular Biology, Roswell Park Memorial Institute, 14263, Buffalo, New York
190 schema:name Department of Molecular Biology, Roswell Park Memorial Institute, 14263, Buffalo, New York
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...