Laminated fabrication of polymeric photovoltaic diodes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-09

AUTHORS

M. Granström, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend

ABSTRACT

Photoexcited electron transfer between donor and acceptor molecular semiconductors provides a method of efficient charge generation following photoabsorption, which can be exploited in photovoltaic diodes1,2,3. But efficient charge separation and transport to collection electrodes is problematic, because the absorbed photons must be close to the donor–acceptor heterojunction, while at the same time good connectivity of the donor and acceptor materials to their respective electrodes is required. Mixtures of acceptor and donor semiconducting polymers3,4 (or macromolecules5) can provide phase-separated structures which go some way to meeting this requirement, providing high photoconductive efficiencies. Here we describe two-layer polymer diodes, fabricated by a lamination technique followed by controlled annealing. The resulting structures provide good connectivity to the collection electrodes, and we achieve a short-circuit photovoltaic quantum efficiency of up to 29% at optimum wavelength, and an overall power conversion efficiency of 1.9% under a simulated solar spectrum. Given the convenience of polymer processing, these results indicate a promising avenue towards practical applications for such devices. More... »

PAGES

257-260

Journal

TITLE

Nature

ISSUE

6699

VOLUME

395

Related Patents

  • Charge-Transport Structures
  • Shaped Nanocrystal Particles And Methods For Making The Same
  • Nanostructured Layer And Fabrication Methods
  • Shaped Nanocrystal Particles And Methods For Making The Same
  • Geometric Configuration Or Alignment Of Protective Material In A Gap Structure For Electrical Devices
  • Lamination As A Modular Approach For Building Organic Photosensitive Devices
  • Voltage Switchable Dielectric Material Containing Conductive Core Shelled Particles
  • Voltage Switchable Dielectric Material Containing Conductor-On-Conductor Core Shelled Particles
  • Polymeric Blends And Related Optoelectronic Devices
  • Electric Discharge Protection For Surface Mounted And Embedded Components
  • Semiconductor Devices Including Voltage Switchable Materials For Over-Voltage Protection
  • Substrates Having Voltage Switchable Dielectric Materials
  • Producing Layered Structures With Layers That Transport Charge Carriers In Which Each Of A Set Of Channel Regions Or Portions Operates As An Acceptable Switch
  • Geometric And Electric Field Considerations For Including Transient Protective Material In Substrate Devices
  • Shaped Nanocrystal Particles And Methods For Working The Same
  • Organic Photosensitive Optoelectronic Device With An Exciton Blocking Layer
  • Nano-Architected/Assembled Solar Electricity Cell
  • Production Method For Organic Thin-Film Solar Cell Module
  • Components Having Voltage Switchable Dielectric Materials
  • Electronic Device For Voltage Switchable Dielectric Material Having High Aspect Ratio Particles
  • Shaped Nanocrystal Particles And Methods For Making The Same
  • Substrates Having Voltage Switchable Dielectric Materials
  • Photovoltaic Devices Fabricated From Nanostructured Template
  • Producing Layered Structures With Semiconductive Regions Or Subregions
  • Formulations For Voltage Switchable Dielectric Material Having A Stepped Voltage Response And Methods For Making The Same
  • Semiconductor Devices Including Voltage Switchable Materials For Over-Voltage Protection
  • Optoelectronic Device And Fabrication Method
  • Formulations For Voltage Switchable Dielectric Materials Having A Stepped Voltage Response And Methods For Making The Same
  • Embedded Protection Against Spurious Electrical Events
  • Electronic And Opto-Electronic Devices Fabricated From Nanostructured High Surface To Volume Ratio Thin Films
  • Producing Layered Structures With Lamination
  • Lateral Collection Photovoltaics
  • Method For Electroplating A Substrate
  • Device Applications For Voltage Switchable Dielectric Material Having High Aspect Ratio Particles
  • Nanostructured Transparent Conducting Electrode
  • Nanostructured Layer And Fabrication Methods
  • Methods For Fabricating Current-Carrying Structures Using Voltage Switchable Dielectric Materials
  • Producing Layered Structures With Lamination
  • Molding Technique For Fabrication Of Optoelectronic Devices
  • Inter Facial Architecture For Nanostructured Optoelectronic Devices
  • Voltage Switchable Dielectric Material Having Bonded Particle Constituents
  • Device Applications For Voltage Switchable Dielectric Material Having High Aspect Ratio Particles
  • Semiconductor Liquid Crystal Composition And Methods For Making The Same
  • Light-Emitting Device Using Voltage Switchable Dielectric Material
  • System And Method For Including Protective Voltage Switchable Dielectric Material In The Design Or Simulation Of Substrate Devices
  • Interfacial Architecture For Nanostructured Optoelectronic Devices
  • Substrate Device Or Package Using Embedded Layer Of Voltage Switchable Dielectric Material In A Vertical Switching Configuration
  • Current-Carrying Structures Fabricated Using Voltage Switchable Dielectric Materials
  • Circuit Elements Comprising Ferroic Materials
  • Multilayer Photovoltaic Or Photoconductive Devices
  • Transparent Electrode, Optoelectronic Apparatus And Devices
  • Photovoltaic Devices Fabricated By Growth From Porous Template
  • Soluble Polymer With Multi-Stable Electric States And Products Comprising Such Polymer
  • Photovoltaic Devices Fabricated From Nanostructured Template
  • Pi-Conjugated Organoboron Polymers In Thin-Film Organic Electronic Devices
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/26183

    DOI

    http://dx.doi.org/10.1038/26183

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052403650


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "*Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Granstr\u00f6m", 
            "givenName": "M.", 
            "id": "sg:person.010225454607.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010225454607.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "*Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Petritsch", 
            "givenName": "K.", 
            "id": "sg:person.016652731117.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652731117.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "*Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arias", 
            "givenName": "A. C.", 
            "id": "sg:person.01046156655.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046156655.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sumitomo Chemical (United Kingdom)", 
              "id": "https://www.grid.ac/institutes/grid.433151.1", 
              "name": [
                "\u2020Cambridge Display Technology Ltd, 181A Huntingdon Road, Cambridge CB3 0DJ, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lux", 
            "givenName": "A.", 
            "id": "sg:person.012471114711.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471114711.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chalmers University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5371.0", 
              "name": [
                "\u2021Department of Polymer Technology, Chalmers University of Technology, S-412 96 Gothenburg, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andersson", 
            "givenName": "M. R.", 
            "id": "sg:person.0711003201.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711003201.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "*Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Friend", 
            "givenName": "R. H.", 
            "id": "sg:person.014540617333.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540617333.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0379-6779(94)03193-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002826115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(94)90004-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005734992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(94)90004-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005734992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0379-6779(97)80058-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007586523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/an9962101349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010243010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/376498a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011979108", 
              "https://doi.org/10.1038/376498a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/353737a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014356537", 
              "https://doi.org/10.1038/353737a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0038-1098(96)00715-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015354301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(93)90564-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018264612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(93)90564-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018264612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/347539a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028275474", 
              "https://doi.org/10.1038/347539a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/365628a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038531286", 
              "https://doi.org/10.1038/365628a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0968-5677(96)00050-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040694190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.19970091508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045630196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-0248(96)00041-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045836760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.19970090308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051341864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0379-6779(97)80202-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051650649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma00100a039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056177478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma00126a033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056178984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.112021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057659576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.115797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057680016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.359792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057982113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.96937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058137065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/16.605474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061095553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5243.1789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.36.l306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063058925"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-09", 
        "datePublishedReg": "1998-09-01", 
        "description": "Photoexcited electron transfer between donor and acceptor molecular semiconductors provides a method of efficient charge generation following photoabsorption, which can be exploited in photovoltaic diodes1,2,3. But efficient charge separation and transport to collection electrodes is problematic, because the absorbed photons must be close to the donor\u2013acceptor heterojunction, while at the same time good connectivity of the donor and acceptor materials to their respective electrodes is required. Mixtures of acceptor and donor semiconducting polymers3,4 (or macromolecules5) can provide phase-separated structures which go some way to meeting this requirement, providing high photoconductive efficiencies. Here we describe two-layer polymer diodes, fabricated by a lamination technique followed by controlled annealing. The resulting structures provide good connectivity to the collection electrodes, and we achieve a short-circuit photovoltaic quantum efficiency of up to 29% at optimum wavelength, and an overall power conversion efficiency of 1.9% under a simulated solar spectrum. Given the convenience of polymer processing, these results indicate a promising avenue towards practical applications for such devices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/26183", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6699", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "395"
          }
        ], 
        "name": "Laminated fabrication of polymeric photovoltaic diodes", 
        "pagination": "257-260", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f99d9cfc26e7a879d2c6f8642fa88a82b11b35abd517fef4ab4c374a97ff7c97"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/26183"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052403650"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/26183", 
          "https://app.dimensions.ai/details/publication/pub.1052403650"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/26183"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/26183'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/26183'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/26183'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/26183'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/26183 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N1b3e620e13be4b44a0d49fe5cda17291
    4 schema:citation sg:pub.10.1038/347539a0
    5 sg:pub.10.1038/353737a0
    6 sg:pub.10.1038/365628a0
    7 sg:pub.10.1038/376498a0
    8 https://doi.org/10.1002/adma.19970090308
    9 https://doi.org/10.1002/adma.19970091508
    10 https://doi.org/10.1016/0379-6779(93)90564-d
    11 https://doi.org/10.1016/0379-6779(94)03193-a
    12 https://doi.org/10.1016/0379-6779(94)90004-3
    13 https://doi.org/10.1016/s0038-1098(96)00715-6
    14 https://doi.org/10.1016/s0379-6779(97)80058-6
    15 https://doi.org/10.1016/s0379-6779(97)80202-0
    16 https://doi.org/10.1016/s0927-0248(96)00041-4
    17 https://doi.org/10.1016/s0968-5677(96)00050-8
    18 https://doi.org/10.1021/ma00100a039
    19 https://doi.org/10.1021/ma00126a033
    20 https://doi.org/10.1039/an9962101349
    21 https://doi.org/10.1063/1.112021
    22 https://doi.org/10.1063/1.115797
    23 https://doi.org/10.1063/1.359792
    24 https://doi.org/10.1063/1.96937
    25 https://doi.org/10.1109/16.605474
    26 https://doi.org/10.1126/science.270.5243.1789
    27 https://doi.org/10.1143/jjap.36.l306
    28 schema:datePublished 1998-09
    29 schema:datePublishedReg 1998-09-01
    30 schema:description Photoexcited electron transfer between donor and acceptor molecular semiconductors provides a method of efficient charge generation following photoabsorption, which can be exploited in photovoltaic diodes1,2,3. But efficient charge separation and transport to collection electrodes is problematic, because the absorbed photons must be close to the donor–acceptor heterojunction, while at the same time good connectivity of the donor and acceptor materials to their respective electrodes is required. Mixtures of acceptor and donor semiconducting polymers3,4 (or macromolecules5) can provide phase-separated structures which go some way to meeting this requirement, providing high photoconductive efficiencies. Here we describe two-layer polymer diodes, fabricated by a lamination technique followed by controlled annealing. The resulting structures provide good connectivity to the collection electrodes, and we achieve a short-circuit photovoltaic quantum efficiency of up to 29% at optimum wavelength, and an overall power conversion efficiency of 1.9% under a simulated solar spectrum. Given the convenience of polymer processing, these results indicate a promising avenue towards practical applications for such devices.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N002d9b9a8653404094b51e158e62484b
    35 N275650b34ae845b08a489606a1c95363
    36 sg:journal.1018957
    37 schema:name Laminated fabrication of polymeric photovoltaic diodes
    38 schema:pagination 257-260
    39 schema:productId N1be621630d034a36891b877ea42c6480
    40 N6c6afcf2ffd1404f948dafb8c7e0d885
    41 N95017a82177c4a9cabd5c90bb44248b7
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052403650
    43 https://doi.org/10.1038/26183
    44 schema:sdDatePublished 2019-04-11T12:28
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N7facc59dcdec43aaa106299faa62c9a5
    47 schema:url http://www.nature.com/articles/26183
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N002d9b9a8653404094b51e158e62484b schema:volumeNumber 395
    52 rdf:type schema:PublicationVolume
    53 N1b3e620e13be4b44a0d49fe5cda17291 rdf:first sg:person.010225454607.34
    54 rdf:rest Ne5773bce992b44158715de54572cd46e
    55 N1be621630d034a36891b877ea42c6480 schema:name readcube_id
    56 schema:value f99d9cfc26e7a879d2c6f8642fa88a82b11b35abd517fef4ab4c374a97ff7c97
    57 rdf:type schema:PropertyValue
    58 N275650b34ae845b08a489606a1c95363 schema:issueNumber 6699
    59 rdf:type schema:PublicationIssue
    60 N61546c79bb0143aca9337fb1e68d48b1 rdf:first sg:person.014540617333.67
    61 rdf:rest rdf:nil
    62 N6c6afcf2ffd1404f948dafb8c7e0d885 schema:name doi
    63 schema:value 10.1038/26183
    64 rdf:type schema:PropertyValue
    65 N7facc59dcdec43aaa106299faa62c9a5 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N95017a82177c4a9cabd5c90bb44248b7 schema:name dimensions_id
    68 schema:value pub.1052403650
    69 rdf:type schema:PropertyValue
    70 Nb6bfa9ed56cd407892763d5e0b62d40c rdf:first sg:person.01046156655.03
    71 rdf:rest Nbdf5c907112e41d2b1b8cf47153eb247
    72 Nbdf5c907112e41d2b1b8cf47153eb247 rdf:first sg:person.012471114711.92
    73 rdf:rest Nfeae3b27a4a744d0bbf01d35c370b552
    74 Ne5773bce992b44158715de54572cd46e rdf:first sg:person.016652731117.96
    75 rdf:rest Nb6bfa9ed56cd407892763d5e0b62d40c
    76 Nfeae3b27a4a744d0bbf01d35c370b552 rdf:first sg:person.0711003201.91
    77 rdf:rest N61546c79bb0143aca9337fb1e68d48b1
    78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Engineering
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Materials Engineering
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1018957 schema:issn 0090-0028
    85 1476-4687
    86 schema:name Nature
    87 rdf:type schema:Periodical
    88 sg:person.010225454607.34 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    89 schema:familyName Granström
    90 schema:givenName M.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010225454607.34
    92 rdf:type schema:Person
    93 sg:person.01046156655.03 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    94 schema:familyName Arias
    95 schema:givenName A. C.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046156655.03
    97 rdf:type schema:Person
    98 sg:person.012471114711.92 schema:affiliation https://www.grid.ac/institutes/grid.433151.1
    99 schema:familyName Lux
    100 schema:givenName A.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471114711.92
    102 rdf:type schema:Person
    103 sg:person.014540617333.67 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    104 schema:familyName Friend
    105 schema:givenName R. H.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540617333.67
    107 rdf:type schema:Person
    108 sg:person.016652731117.96 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    109 schema:familyName Petritsch
    110 schema:givenName K.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652731117.96
    112 rdf:type schema:Person
    113 sg:person.0711003201.91 schema:affiliation https://www.grid.ac/institutes/grid.5371.0
    114 schema:familyName Andersson
    115 schema:givenName M. R.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711003201.91
    117 rdf:type schema:Person
    118 sg:pub.10.1038/347539a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028275474
    119 https://doi.org/10.1038/347539a0
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/353737a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014356537
    122 https://doi.org/10.1038/353737a0
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/365628a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038531286
    125 https://doi.org/10.1038/365628a0
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/376498a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011979108
    128 https://doi.org/10.1038/376498a0
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1002/adma.19970090308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051341864
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1002/adma.19970091508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045630196
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/0379-6779(93)90564-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1018264612
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/0379-6779(94)03193-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1002826115
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/0379-6779(94)90004-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005734992
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/s0038-1098(96)00715-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015354301
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/s0379-6779(97)80058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007586523
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s0379-6779(97)80202-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051650649
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/s0927-0248(96)00041-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045836760
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/s0968-5677(96)00050-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040694190
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1021/ma00100a039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056177478
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1021/ma00126a033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056178984
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1039/an9962101349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010243010
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1063/1.112021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057659576
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1063/1.115797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057680016
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1063/1.359792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057982113
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1063/1.96937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058137065
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/16.605474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061095553
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1126/science.270.5243.1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551794
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1143/jjap.36.l306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063058925
    169 rdf:type schema:CreativeWork
    170 https://www.grid.ac/institutes/grid.433151.1 schema:alternateName Sumitomo Chemical (United Kingdom)
    171 schema:name †Cambridge Display Technology Ltd, 181A Huntingdon Road, Cambridge CB3 0DJ, UK
    172 rdf:type schema:Organization
    173 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    174 schema:name *Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
    175 rdf:type schema:Organization
    176 https://www.grid.ac/institutes/grid.5371.0 schema:alternateName Chalmers University of Technology
    177 schema:name ‡Department of Polymer Technology, Chalmers University of Technology, S-412 96 Gothenburg, Sweden
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...