Thermostability studies for investigating non-electrophoretic polymorphic alleles in Drosophila melanogaster View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1976-03

AUTHORS

G. TRIPPA, A. LOVERRE, A. CATAMO

ABSTRACT

ON theoretical grounds it is generally believed that most structural genes have common isoelectrophoretic alleles1–3—polymorphic alleles that cannot be discovered by electrophoresis—but there is no direct evidence for this. Methods that might be used to search for such structural variability (involving, for example, thermostability or kinetic studies) have not often been adopted as screening procedures though they have been used to compare already identified electrophoretic alleles. This is not only because such methods are often unsuitable for screening purposes. Even when a screening method can be applied, its efficiency in revealing existing structural variability is not known a priori, not even approximately, as for electrophoresis. Moreover, this unknown efficiency is presumably very low because although electrophoresis, being a separation technique, separates the products of two alleles in heterozygotes, other screening procedures only pick up the combined products which may or may not show an intermediate characteristic. It would usually be extremely difficult to distinguish between the three types. Thus, for any enzyme for which such a method is available, a two-step procedure seems convenient: (a) to test it on already known structural (electrophoretic) alleles of that enzyme, and if it turns out that it is efficient (b) to use the method in a search for structural isoelectrophoretic alleles. It must be assumed that these two types of structural differences are, on average, equally likely to affect the parameter being studied. More... »

PAGES

42-44

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/260042a0

DOI

http://dx.doi.org/10.1038/260042a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036090201

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/817203


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila melanogaster", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hot Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphoglucomutase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Genetica, Facolt\u00e0 di Scienze, Roma, Italia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Istituto di Genetica, Facolt\u00e0 di Scienze, Roma, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "TRIPPA", 
        "givenName": "G.", 
        "id": "sg:person.0110162337.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0110162337.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Genetica, Facolt\u00e0 di Scienze, Roma, Italia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Istituto di Genetica, Facolt\u00e0 di Scienze, Roma, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LOVERRE", 
        "givenName": "A.", 
        "id": "sg:person.01323702307.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323702307.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Genetica, Facolt\u00e0 di Scienze, Roma, Italia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Istituto di Genetica, Facolt\u00e0 di Scienze, Roma, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "CATAMO", 
        "givenName": "A.", 
        "id": "sg:person.061450214.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.061450214.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/newbio237031a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021351968", 
          "https://doi.org/10.1038/newbio237031a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00486380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021058673", 
          "https://doi.org/10.1007/bf00486380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/204742a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003507873", 
          "https://doi.org/10.1038/204742a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1976-03", 
    "datePublishedReg": "1976-03-01", 
    "description": "ON theoretical grounds it is generally believed that most structural genes have common isoelectrophoretic alleles1\u20133\u2014polymorphic alleles that cannot be discovered by electrophoresis\u2014but there is no direct evidence for this. Methods that might be used to search for such structural variability (involving, for example, thermostability or kinetic studies) have not often been adopted as screening procedures though they have been used to compare already identified electrophoretic alleles. This is not only because such methods are often unsuitable for screening purposes. Even when a screening method can be applied, its efficiency in revealing existing structural variability is not known a priori, not even approximately, as for electrophoresis. Moreover, this unknown efficiency is presumably very low because although electrophoresis, being a separation technique, separates the products of two alleles in heterozygotes, other screening procedures only pick up the combined products which may or may not show an intermediate characteristic. It would usually be extremely difficult to distinguish between the three types. Thus, for any enzyme for which such a method is available, a two-step procedure seems convenient: (a) to test it on already known structural (electrophoretic) alleles of that enzyme, and if it turns out that it is efficient (b) to use the method in a search for structural isoelectrophoretic alleles. It must be assumed that these two types of structural differences are, on average, equally likely to affect the parameter being studied.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/260042a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5546", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "260"
      }
    ], 
    "keywords": [
      "separation techniques", 
      "efficiency", 
      "unknown efficiency", 
      "two-step procedure", 
      "method", 
      "such methods", 
      "parameters", 
      "products", 
      "characteristics", 
      "procedure", 
      "technique", 
      "ground", 
      "types", 
      "variability", 
      "purpose", 
      "structural variability", 
      "structural differences", 
      "intermediate characteristics", 
      "theoretical grounds", 
      "study", 
      "screening method", 
      "direct evidence", 
      "differences", 
      "search", 
      "screening procedure", 
      "thermostability studies", 
      "electrophoresis", 
      "evidence", 
      "enzyme", 
      "electrophoretic alleles", 
      "Drosophila melanogaster", 
      "genes", 
      "melanogaster", 
      "structural gene", 
      "alleles", 
      "most structural genes", 
      "heterozygotes", 
      "polymorphic alleles", 
      "structural alleles"
    ], 
    "name": "Thermostability studies for investigating non-electrophoretic polymorphic alleles in Drosophila melanogaster", 
    "pagination": "42-44", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036090201"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/260042a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "817203"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/260042a0", 
      "https://app.dimensions.ai/details/publication/pub.1036090201"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_126.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/260042a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/260042a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/260042a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/260042a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/260042a0'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      75 URIs      64 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/260042a0 schema:about N05f5ca1c2e62426f9c8c68541baa0175
2 N0b5b79116b684ae794ed3668e1ef8fb3
3 Na2397acd60e948828a872bb41df2cf3d
4 Nbec2b75a157444ae8eadc58ee7543228
5 Nccee2cffdac44e8aa48fd0389c003c4d
6 Neca3b91fe914448d9a3c59235db258ea
7 Nfa808448ed4643d58dd17a9c9d9aa36d
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author Nd975c3f6788541eba631d3c79b793c09
11 schema:citation sg:pub.10.1007/bf00486380
12 sg:pub.10.1038/204742a0
13 sg:pub.10.1038/newbio237031a0
14 schema:datePublished 1976-03
15 schema:datePublishedReg 1976-03-01
16 schema:description ON theoretical grounds it is generally believed that most structural genes have common isoelectrophoretic alleles1–3—polymorphic alleles that cannot be discovered by electrophoresis—but there is no direct evidence for this. Methods that might be used to search for such structural variability (involving, for example, thermostability or kinetic studies) have not often been adopted as screening procedures though they have been used to compare already identified electrophoretic alleles. This is not only because such methods are often unsuitable for screening purposes. Even when a screening method can be applied, its efficiency in revealing existing structural variability is not known a priori, not even approximately, as for electrophoresis. Moreover, this unknown efficiency is presumably very low because although electrophoresis, being a separation technique, separates the products of two alleles in heterozygotes, other screening procedures only pick up the combined products which may or may not show an intermediate characteristic. It would usually be extremely difficult to distinguish between the three types. Thus, for any enzyme for which such a method is available, a two-step procedure seems convenient: (a) to test it on already known structural (electrophoretic) alleles of that enzyme, and if it turns out that it is efficient (b) to use the method in a search for structural isoelectrophoretic alleles. It must be assumed that these two types of structural differences are, on average, equally likely to affect the parameter being studied.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N9a458ff24e7a4ee6b400825e066c7dba
20 Nc69679cccc954b6ea3eff01cbffce91c
21 sg:journal.1018957
22 schema:keywords Drosophila melanogaster
23 alleles
24 characteristics
25 differences
26 direct evidence
27 efficiency
28 electrophoresis
29 electrophoretic alleles
30 enzyme
31 evidence
32 genes
33 ground
34 heterozygotes
35 intermediate characteristics
36 melanogaster
37 method
38 most structural genes
39 parameters
40 polymorphic alleles
41 procedure
42 products
43 purpose
44 screening method
45 screening procedure
46 search
47 separation techniques
48 structural alleles
49 structural differences
50 structural gene
51 structural variability
52 study
53 such methods
54 technique
55 theoretical grounds
56 thermostability studies
57 two-step procedure
58 types
59 unknown efficiency
60 variability
61 schema:name Thermostability studies for investigating non-electrophoretic polymorphic alleles in Drosophila melanogaster
62 schema:pagination 42-44
63 schema:productId N52ef827d7450444598a4f604b34142c5
64 Nb2c0a9c7016449bba07213e1db79a061
65 Nfa7db674e5f74d3cb149101713786f22
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036090201
67 https://doi.org/10.1038/260042a0
68 schema:sdDatePublished 2022-12-01T06:17
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nd2caa15f64504adcaab372b1c57a2da8
71 schema:url https://doi.org/10.1038/260042a0
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N05f5ca1c2e62426f9c8c68541baa0175 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Drosophila melanogaster
77 rdf:type schema:DefinedTerm
78 N0b5b79116b684ae794ed3668e1ef8fb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Alleles
80 rdf:type schema:DefinedTerm
81 N52ef827d7450444598a4f604b34142c5 schema:name dimensions_id
82 schema:value pub.1036090201
83 rdf:type schema:PropertyValue
84 N7dab0273789940758dcfe1cd7f04cb20 rdf:first sg:person.061450214.49
85 rdf:rest rdf:nil
86 N9a458ff24e7a4ee6b400825e066c7dba schema:issueNumber 5546
87 rdf:type schema:PublicationIssue
88 Na2397acd60e948828a872bb41df2cf3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Polymorphism, Genetic
90 rdf:type schema:DefinedTerm
91 Nb2c0a9c7016449bba07213e1db79a061 schema:name pubmed_id
92 schema:value 817203
93 rdf:type schema:PropertyValue
94 Nbec2b75a157444ae8eadc58ee7543228 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Hot Temperature
96 rdf:type schema:DefinedTerm
97 Nc69679cccc954b6ea3eff01cbffce91c schema:volumeNumber 260
98 rdf:type schema:PublicationVolume
99 Nccee2cffdac44e8aa48fd0389c003c4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Animals
101 rdf:type schema:DefinedTerm
102 Nd2caa15f64504adcaab372b1c57a2da8 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nd975c3f6788541eba631d3c79b793c09 rdf:first sg:person.0110162337.71
105 rdf:rest Nf5c7406fb81e438697fab61e412399ee
106 Neca3b91fe914448d9a3c59235db258ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Phosphoglucomutase
108 rdf:type schema:DefinedTerm
109 Nf5c7406fb81e438697fab61e412399ee rdf:first sg:person.01323702307.60
110 rdf:rest N7dab0273789940758dcfe1cd7f04cb20
111 Nfa7db674e5f74d3cb149101713786f22 schema:name doi
112 schema:value 10.1038/260042a0
113 rdf:type schema:PropertyValue
114 Nfa808448ed4643d58dd17a9c9d9aa36d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Electrophoresis
116 rdf:type schema:DefinedTerm
117 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
118 schema:name Biological Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biochemistry and Cell Biology
122 rdf:type schema:DefinedTerm
123 sg:journal.1018957 schema:issn 0028-0836
124 1476-4687
125 schema:name Nature
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.0110162337.71 schema:affiliation grid-institutes:None
129 schema:familyName TRIPPA
130 schema:givenName G.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0110162337.71
132 rdf:type schema:Person
133 sg:person.01323702307.60 schema:affiliation grid-institutes:None
134 schema:familyName LOVERRE
135 schema:givenName A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323702307.60
137 rdf:type schema:Person
138 sg:person.061450214.49 schema:affiliation grid-institutes:None
139 schema:familyName CATAMO
140 schema:givenName A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.061450214.49
142 rdf:type schema:Person
143 sg:pub.10.1007/bf00486380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021058673
144 https://doi.org/10.1007/bf00486380
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/204742a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003507873
147 https://doi.org/10.1038/204742a0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/newbio237031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021351968
150 https://doi.org/10.1038/newbio237031a0
151 rdf:type schema:CreativeWork
152 grid-institutes:None schema:alternateName Istituto di Genetica, Facoltà di Scienze, Roma, Italia
153 schema:name Istituto di Genetica, Facoltà di Scienze, Roma, Italia
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...