Electrostatically driven charge-ordering in Fe2OBO3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-12

AUTHORS

J. P. Attfield, A. M. T. Bell, L. M. Rodriguez-Martinez, J. M. Greneche, R. J. Cernik, J. F. Clarke, D. A. Perkins

ABSTRACT

Charge-ordering is an important phenomenon in conducting metal oxides: it leads to metal–insulator transitions1 in manganite perovskites (which show ‘colossal’ magnetoresistances), and the Verwey2 transition in magnetite (in which the material becomes insulating at low temperatures when the conduction electrons freeze into a regular array). Charge-ordered ‘stripes’ are found in some manganites3,4 and copper oxide superconductors5; in the latter case, dynamic fluctuations of the stripes have been proposed6 as a mechanism of high-temperature superconductivity. But an important unresolved issue is whether the charge-ordering in oxides is driven by electrostatic repulsions between the charges (Wigner crystallization7), or by the strains arising from electron–lattice interactions (such as Jahn–Teller distortions) involving different localized electronic states. Here we report measurements on iron oxoborate, Fe2OBO3, that support the electrostatic repulsion charge-ordering mechanism: the system adopts a charge-ordered state below 317 K, in which Fe2+ and Fe3+ ions are equally distributed over structurally distinct Fesites. In contrast, the isostructural manganese oxoborate, Mn2OBO3, has been previously shown8 to undergo charge-ordering through Jahn–Teller distortions. We therefore conclude that both mechanisms occur within the same structural arrangement. More... »

PAGES

655-658

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/25309

DOI

http://dx.doi.org/10.1038/25309

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038431838


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK", 
            "IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Attfield", 
        "givenName": "J. P.", 
        "id": "sg:person.01216670420.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216670420.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bell", 
        "givenName": "A. M. T.", 
        "id": "sg:person.010746206436.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746206436.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK", 
            "IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodriguez-Martinez", 
        "givenName": "L. M.", 
        "id": "sg:person.010106465606.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106465606.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique de l'Etat Condens\u00e9, UPRESA CNRS 6087, Universit\u00e9 du Maine, 72085, Le Mans, France", 
          "id": "http://www.grid.ac/institutes/grid.34566.32", 
          "name": [
            "Laboratoire de Physique de l'Etat Condens\u00e9, UPRESA CNRS 6087, Universit\u00e9 du Maine, 72085, Le Mans, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greneche", 
        "givenName": "J. M.", 
        "id": "sg:person.016125327023.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016125327023.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Synchrotron Radiation Source, CLRC Daresbury Laboratory, WA4 4AD, Warrington, UK", 
          "id": "http://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Synchrotron Radiation Source, CLRC Daresbury Laboratory, WA4 4AD, Warrington, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cernik", 
        "givenName": "R. J.", 
        "id": "sg:person.01027355100.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027355100.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clarke", 
        "givenName": "J. F.", 
        "id": "sg:person.014521343705.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014521343705.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perkins", 
        "givenName": "D. A.", 
        "id": "sg:person.016711665305.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016711665305.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/375561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037624168", 
          "https://doi.org/10.1038/375561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/33105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017343607", 
          "https://doi.org/10.1038/33105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/144327b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020600841", 
          "https://doi.org/10.1038/144327b0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-12", 
    "datePublishedReg": "1998-12-01", 
    "description": "Charge-ordering is an important phenomenon in conducting metal oxides: it leads to metal\u2013insulator transitions1 in manganite perovskites (which show \u2018colossal\u2019 magnetoresistances), and the Verwey2 transition in magnetite (in which the material becomes insulating at low temperatures when the conduction electrons freeze into a regular array). Charge-ordered \u2018stripes\u2019 are found in some manganites3,4 and copper oxide superconductors5; in the latter case, dynamic fluctuations of the stripes have been proposed6 as a mechanism of high-temperature superconductivity. But an important unresolved issue is whether the charge-ordering in oxides is driven by electrostatic repulsions between the charges (Wigner crystallization7), or by the strains arising from electron\u2013lattice interactions (such as Jahn\u2013Teller distortions) involving different localized electronic states. Here we report measurements on iron oxoborate, Fe2OBO3, that support the electrostatic repulsion charge-ordering mechanism: the system adopts a charge-ordered state below 317\u2009K, in which Fe2+ and Fe3+ ions are equally distributed over structurally distinct Fesites. In contrast, the isostructural manganese oxoborate, Mn2OBO3, has been previously shown8 to undergo charge-ordering through Jahn\u2013Teller distortions. We therefore conclude that both mechanisms occur within the same structural arrangement.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/25309", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6712", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "396"
      }
    ], 
    "keywords": [
      "high-temperature superconductivity", 
      "electron-lattice interaction", 
      "metal oxides", 
      "charge-ordered state", 
      "iron oxoborate", 
      "Jahn-Teller distortion", 
      "electronic states", 
      "manganite perovskites", 
      "same structural arrangement", 
      "oxide", 
      "important phenomenon", 
      "oxoborate", 
      "electrostatic repulsion", 
      "perovskites", 
      "stripes", 
      "latter case", 
      "superconductivity", 
      "structural arrangement", 
      "dynamic fluctuations", 
      "ions", 
      "state", 
      "distortion", 
      "repulsion", 
      "magnetite", 
      "measurements", 
      "transition", 
      "important unresolved issues", 
      "charge", 
      "fluctuations", 
      "system", 
      "phenomenon", 
      "Fe2", 
      "mechanism", 
      "arrangement", 
      "interaction", 
      "strains", 
      "unresolved issues", 
      "issues", 
      "cases", 
      "contrast", 
      "metal\u2013insulator transitions1", 
      "transitions1", 
      "Verwey2 transition", 
      "copper oxide superconductors5", 
      "oxide superconductors5", 
      "superconductors5", 
      "electrostatic repulsion charge-ordering mechanism", 
      "repulsion charge-ordering mechanism", 
      "charge-ordering mechanism", 
      "distinct Fesites", 
      "Fesites", 
      "isostructural manganese oxoborate", 
      "manganese oxoborate", 
      "Mn2OBO3"
    ], 
    "name": "Electrostatically driven charge-ordering in Fe2OBO3", 
    "pagination": "655-658", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038431838"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/25309"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/25309", 
      "https://app.dimensions.ai/details/publication/pub.1038431838"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_286.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/25309"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/25309'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/25309'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/25309'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/25309'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      22 PREDICATES      84 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/25309 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0306
4 schema:author N6731c6b5579d45d8a2ea85493eb6fe1d
5 schema:citation sg:pub.10.1038/144327b0
6 sg:pub.10.1038/33105
7 sg:pub.10.1038/375561a0
8 schema:datePublished 1998-12
9 schema:datePublishedReg 1998-12-01
10 schema:description Charge-ordering is an important phenomenon in conducting metal oxides: it leads to metal–insulator transitions1 in manganite perovskites (which show ‘colossal’ magnetoresistances), and the Verwey2 transition in magnetite (in which the material becomes insulating at low temperatures when the conduction electrons freeze into a regular array). Charge-ordered ‘stripes’ are found in some manganites3,4 and copper oxide superconductors5; in the latter case, dynamic fluctuations of the stripes have been proposed6 as a mechanism of high-temperature superconductivity. But an important unresolved issue is whether the charge-ordering in oxides is driven by electrostatic repulsions between the charges (Wigner crystallization7), or by the strains arising from electron–lattice interactions (such as Jahn–Teller distortions) involving different localized electronic states. Here we report measurements on iron oxoborate, Fe2OBO3, that support the electrostatic repulsion charge-ordering mechanism: the system adopts a charge-ordered state below 317 K, in which Fe2+ and Fe3+ ions are equally distributed over structurally distinct Fesites. In contrast, the isostructural manganese oxoborate, Mn2OBO3, has been previously shown8 to undergo charge-ordering through Jahn–Teller distortions. We therefore conclude that both mechanisms occur within the same structural arrangement.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nb2399db0b34446c4ac463928549ce448
15 Nd90310b4e7d041cba03e6cb2c79310b4
16 sg:journal.1018957
17 schema:keywords Fe2
18 Fesites
19 Jahn-Teller distortion
20 Mn2OBO3
21 Verwey2 transition
22 arrangement
23 cases
24 charge
25 charge-ordered state
26 charge-ordering mechanism
27 contrast
28 copper oxide superconductors5
29 distinct Fesites
30 distortion
31 dynamic fluctuations
32 electron-lattice interaction
33 electronic states
34 electrostatic repulsion
35 electrostatic repulsion charge-ordering mechanism
36 fluctuations
37 high-temperature superconductivity
38 important phenomenon
39 important unresolved issues
40 interaction
41 ions
42 iron oxoborate
43 isostructural manganese oxoborate
44 issues
45 latter case
46 magnetite
47 manganese oxoborate
48 manganite perovskites
49 measurements
50 mechanism
51 metal oxides
52 metal–insulator transitions1
53 oxide
54 oxide superconductors5
55 oxoborate
56 perovskites
57 phenomenon
58 repulsion
59 repulsion charge-ordering mechanism
60 same structural arrangement
61 state
62 strains
63 stripes
64 structural arrangement
65 superconductivity
66 superconductors5
67 system
68 transition
69 transitions1
70 unresolved issues
71 schema:name Electrostatically driven charge-ordering in Fe2OBO3
72 schema:pagination 655-658
73 schema:productId N6726603f689044c4b417ca4399c56b90
74 Nc7504959eb1d4901822cbf70c6fb8f40
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038431838
76 https://doi.org/10.1038/25309
77 schema:sdDatePublished 2022-01-01T18:08
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nd8bc4a5fb9c646919394cc761cd72716
80 schema:url https://doi.org/10.1038/25309
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0749564147524e1297c516a453bcfab7 rdf:first sg:person.010106465606.09
85 rdf:rest Nabeac9c9d7e643a996ebc31ae434892b
86 N2dffc6b4be3348389260373a88da707b rdf:first sg:person.016711665305.74
87 rdf:rest rdf:nil
88 N6726603f689044c4b417ca4399c56b90 schema:name doi
89 schema:value 10.1038/25309
90 rdf:type schema:PropertyValue
91 N6731c6b5579d45d8a2ea85493eb6fe1d rdf:first sg:person.01216670420.40
92 rdf:rest N954aa97a944f4d8db1c76c3ad42e4059
93 N7195e24f6cb146d78f7ed194b300f899 rdf:first sg:person.014521343705.90
94 rdf:rest N2dffc6b4be3348389260373a88da707b
95 N7af23010be4047acac32ecdcf8a3ae10 rdf:first sg:person.01027355100.96
96 rdf:rest N7195e24f6cb146d78f7ed194b300f899
97 N954aa97a944f4d8db1c76c3ad42e4059 rdf:first sg:person.010746206436.61
98 rdf:rest N0749564147524e1297c516a453bcfab7
99 Nabeac9c9d7e643a996ebc31ae434892b rdf:first sg:person.016125327023.85
100 rdf:rest N7af23010be4047acac32ecdcf8a3ae10
101 Nb2399db0b34446c4ac463928549ce448 schema:issueNumber 6712
102 rdf:type schema:PublicationIssue
103 Nc7504959eb1d4901822cbf70c6fb8f40 schema:name dimensions_id
104 schema:value pub.1038431838
105 rdf:type schema:PropertyValue
106 Nd8bc4a5fb9c646919394cc761cd72716 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nd90310b4e7d041cba03e6cb2c79310b4 schema:volumeNumber 396
109 rdf:type schema:PublicationVolume
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
114 schema:name Inorganic Chemistry
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Chemistry (incl. Structural)
118 rdf:type schema:DefinedTerm
119 sg:journal.1018957 schema:issn 0028-0836
120 1476-4687
121 schema:name Nature
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.010106465606.09 schema:affiliation grid-institutes:grid.5335.0
125 schema:familyName Rodriguez-Martinez
126 schema:givenName L. M.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106465606.09
128 rdf:type schema:Person
129 sg:person.01027355100.96 schema:affiliation grid-institutes:grid.482271.a
130 schema:familyName Cernik
131 schema:givenName R. J.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027355100.96
133 rdf:type schema:Person
134 sg:person.010746206436.61 schema:affiliation grid-institutes:grid.5335.0
135 schema:familyName Bell
136 schema:givenName A. M. T.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746206436.61
138 rdf:type schema:Person
139 sg:person.01216670420.40 schema:affiliation grid-institutes:grid.5335.0
140 schema:familyName Attfield
141 schema:givenName J. P.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216670420.40
143 rdf:type schema:Person
144 sg:person.014521343705.90 schema:affiliation grid-institutes:grid.4991.5
145 schema:familyName Clarke
146 schema:givenName J. F.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014521343705.90
148 rdf:type schema:Person
149 sg:person.016125327023.85 schema:affiliation grid-institutes:grid.34566.32
150 schema:familyName Greneche
151 schema:givenName J. M.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016125327023.85
153 rdf:type schema:Person
154 sg:person.016711665305.74 schema:affiliation grid-institutes:grid.4991.5
155 schema:familyName Perkins
156 schema:givenName D. A.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016711665305.74
158 rdf:type schema:Person
159 sg:pub.10.1038/144327b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020600841
160 https://doi.org/10.1038/144327b0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/33105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017343607
163 https://doi.org/10.1038/33105
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/375561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037624168
166 https://doi.org/10.1038/375561a0
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.34566.32 schema:alternateName Laboratoire de Physique de l'Etat Condensé, UPRESA CNRS 6087, Université du Maine, 72085, Le Mans, France
169 schema:name Laboratoire de Physique de l'Etat Condensé, UPRESA CNRS 6087, Université du Maine, 72085, Le Mans, France
170 rdf:type schema:Organization
171 grid-institutes:grid.482271.a schema:alternateName Synchrotron Radiation Source, CLRC Daresbury Laboratory, WA4 4AD, Warrington, UK
172 schema:name Synchrotron Radiation Source, CLRC Daresbury Laboratory, WA4 4AD, Warrington, UK
173 rdf:type schema:Organization
174 grid-institutes:grid.4991.5 schema:alternateName Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK
175 schema:name Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK
176 rdf:type schema:Organization
177 grid-institutes:grid.5335.0 schema:alternateName Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
178 IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK
179 schema:name Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
180 IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...