Electrostatically driven charge-ordering in Fe2OBO3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-12

AUTHORS

J. P. Attfield, A. M. T. Bell, L. M. Rodriguez-Martinez, J. M. Greneche, R. J. Cernik, J. F. Clarke, D. A. Perkins

ABSTRACT

Charge-ordering is an important phenomenon in conducting metal oxides: it leads to metal–insulator transitions1 in manganite perovskites (which show ‘colossal’ magnetoresistances), and the Verwey2 transition in magnetite (in which the material becomes insulating at low temperatures when the conduction electrons freeze into a regular array). Charge-ordered ‘stripes’ are found in some manganites3,4 and copper oxide superconductors5; in the latter case, dynamic fluctuations of the stripes have been proposed6 as a mechanism of high-temperature superconductivity. But an important unresolved issue is whether the charge-ordering in oxides is driven by electrostatic repulsions between the charges (Wigner crystallization7), or by the strains arising from electron–lattice interactions (such as Jahn–Teller distortions) involving different localized electronic states. Here we report measurements on iron oxoborate, Fe2OBO3, that support the electrostatic repulsion charge-ordering mechanism: the system adopts a charge-ordered state below 317 K, in which Fe2+ and Fe3+ ions are equally distributed over structurally distinct Fesites. In contrast, the isostructural manganese oxoborate, Mn2OBO3, has been previously shown8 to undergo charge-ordering through Jahn–Teller distortions. We therefore conclude that both mechanisms occur within the same structural arrangement. More... »

PAGES

655-658

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/25309

DOI

http://dx.doi.org/10.1038/25309

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038431838


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK", 
            "IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Attfield", 
        "givenName": "J. P.", 
        "id": "sg:person.01216670420.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216670420.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bell", 
        "givenName": "A. M. T.", 
        "id": "sg:person.010746206436.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746206436.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK", 
            "IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodriguez-Martinez", 
        "givenName": "L. M.", 
        "id": "sg:person.010106465606.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106465606.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique de l'Etat Condens\u00e9, UPRESA CNRS 6087, Universit\u00e9 du Maine, 72085, Le Mans, France", 
          "id": "http://www.grid.ac/institutes/grid.34566.32", 
          "name": [
            "Laboratoire de Physique de l'Etat Condens\u00e9, UPRESA CNRS 6087, Universit\u00e9 du Maine, 72085, Le Mans, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greneche", 
        "givenName": "J. M.", 
        "id": "sg:person.016125327023.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016125327023.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Synchrotron Radiation Source, CLRC Daresbury Laboratory, WA4 4AD, Warrington, UK", 
          "id": "http://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Synchrotron Radiation Source, CLRC Daresbury Laboratory, WA4 4AD, Warrington, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cernik", 
        "givenName": "R. J.", 
        "id": "sg:person.01027355100.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027355100.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clarke", 
        "givenName": "J. F.", 
        "id": "sg:person.014521343705.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014521343705.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perkins", 
        "givenName": "D. A.", 
        "id": "sg:person.016711665305.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016711665305.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/375561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037624168", 
          "https://doi.org/10.1038/375561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/33105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017343607", 
          "https://doi.org/10.1038/33105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/144327b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020600841", 
          "https://doi.org/10.1038/144327b0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-12", 
    "datePublishedReg": "1998-12-01", 
    "description": "Charge-ordering is an important phenomenon in conducting metal oxides: it leads to metal\u2013insulator transitions1 in manganite perovskites (which show \u2018colossal\u2019 magnetoresistances), and the Verwey2 transition in magnetite (in which the material becomes insulating at low temperatures when the conduction electrons freeze into a regular array). Charge-ordered \u2018stripes\u2019 are found in some manganites3,4 and copper oxide superconductors5; in the latter case, dynamic fluctuations of the stripes have been proposed6 as a mechanism of high-temperature superconductivity. But an important unresolved issue is whether the charge-ordering in oxides is driven by electrostatic repulsions between the charges (Wigner crystallization7), or by the strains arising from electron\u2013lattice interactions (such as Jahn\u2013Teller distortions) involving different localized electronic states. Here we report measurements on iron oxoborate, Fe2OBO3, that support the electrostatic repulsion charge-ordering mechanism: the system adopts a charge-ordered state below 317\u2009K, in which Fe2+ and Fe3+ ions are equally distributed over structurally distinct Fesites. In contrast, the isostructural manganese oxoborate, Mn2OBO3, has been previously shown8 to undergo charge-ordering through Jahn\u2013Teller distortions. We therefore conclude that both mechanisms occur within the same structural arrangement.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/25309", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6712", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "396"
      }
    ], 
    "keywords": [
      "high-temperature superconductivity", 
      "electron-lattice interaction", 
      "metal oxides", 
      "charge-ordered state", 
      "iron oxoborate", 
      "Jahn-Teller distortion", 
      "electronic states", 
      "manganite perovskites", 
      "same structural arrangement", 
      "oxide", 
      "important phenomenon", 
      "oxoborate", 
      "electrostatic repulsion", 
      "perovskites", 
      "stripes", 
      "latter case", 
      "superconductivity", 
      "structural arrangement", 
      "dynamic fluctuations", 
      "ions", 
      "state", 
      "distortion", 
      "repulsion", 
      "magnetite", 
      "measurements", 
      "transition", 
      "important unresolved issues", 
      "charge", 
      "fluctuations", 
      "system", 
      "phenomenon", 
      "Fe2", 
      "mechanism", 
      "arrangement", 
      "interaction", 
      "strains", 
      "unresolved issues", 
      "issues", 
      "cases", 
      "contrast"
    ], 
    "name": "Electrostatically driven charge-ordering in Fe2OBO3", 
    "pagination": "655-658", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038431838"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/25309"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/25309", 
      "https://app.dimensions.ai/details/publication/pub.1038431838"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_301.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/25309"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/25309'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/25309'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/25309'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/25309'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      70 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/25309 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0306
4 schema:author N4cab51b432c840e081b4a7f18787aae7
5 schema:citation sg:pub.10.1038/144327b0
6 sg:pub.10.1038/33105
7 sg:pub.10.1038/375561a0
8 schema:datePublished 1998-12
9 schema:datePublishedReg 1998-12-01
10 schema:description Charge-ordering is an important phenomenon in conducting metal oxides: it leads to metal–insulator transitions1 in manganite perovskites (which show ‘colossal’ magnetoresistances), and the Verwey2 transition in magnetite (in which the material becomes insulating at low temperatures when the conduction electrons freeze into a regular array). Charge-ordered ‘stripes’ are found in some manganites3,4 and copper oxide superconductors5; in the latter case, dynamic fluctuations of the stripes have been proposed6 as a mechanism of high-temperature superconductivity. But an important unresolved issue is whether the charge-ordering in oxides is driven by electrostatic repulsions between the charges (Wigner crystallization7), or by the strains arising from electron–lattice interactions (such as Jahn–Teller distortions) involving different localized electronic states. Here we report measurements on iron oxoborate, Fe2OBO3, that support the electrostatic repulsion charge-ordering mechanism: the system adopts a charge-ordered state below 317 K, in which Fe2+ and Fe3+ ions are equally distributed over structurally distinct Fesites. In contrast, the isostructural manganese oxoborate, Mn2OBO3, has been previously shown8 to undergo charge-ordering through Jahn–Teller distortions. We therefore conclude that both mechanisms occur within the same structural arrangement.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nc364c06ccd254dacb2624eadee1aa7f7
15 Nc41b0670357f4766bf214e1f2f948ce4
16 sg:journal.1018957
17 schema:keywords Fe2
18 Jahn-Teller distortion
19 arrangement
20 cases
21 charge
22 charge-ordered state
23 contrast
24 distortion
25 dynamic fluctuations
26 electron-lattice interaction
27 electronic states
28 electrostatic repulsion
29 fluctuations
30 high-temperature superconductivity
31 important phenomenon
32 important unresolved issues
33 interaction
34 ions
35 iron oxoborate
36 issues
37 latter case
38 magnetite
39 manganite perovskites
40 measurements
41 mechanism
42 metal oxides
43 oxide
44 oxoborate
45 perovskites
46 phenomenon
47 repulsion
48 same structural arrangement
49 state
50 strains
51 stripes
52 structural arrangement
53 superconductivity
54 system
55 transition
56 unresolved issues
57 schema:name Electrostatically driven charge-ordering in Fe2OBO3
58 schema:pagination 655-658
59 schema:productId N34617010dd6d4d87adad237d14a0bd8b
60 N4f8cf859b5da4ecdbc99684452a6c6fb
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038431838
62 https://doi.org/10.1038/25309
63 schema:sdDatePublished 2022-05-20T07:20
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N150d8fcf2c0e44f48a802e4d15f9370f
66 schema:url https://doi.org/10.1038/25309
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N150d8fcf2c0e44f48a802e4d15f9370f schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N2233b6181b264be8b50a208932d7f84c rdf:first sg:person.01027355100.96
73 rdf:rest N2908d5bfbed74a838bd306360712b3cc
74 N2908d5bfbed74a838bd306360712b3cc rdf:first sg:person.014521343705.90
75 rdf:rest N5fa6b620ae394d05910567b7e0a1aac3
76 N2a7743e6bb524a94a6422801ebce00b3 rdf:first sg:person.016125327023.85
77 rdf:rest N2233b6181b264be8b50a208932d7f84c
78 N34617010dd6d4d87adad237d14a0bd8b schema:name doi
79 schema:value 10.1038/25309
80 rdf:type schema:PropertyValue
81 N46ea5767642d4baa950b11dcb75b0311 rdf:first sg:person.010746206436.61
82 rdf:rest Ne97d7f4d2aae4b8392fb8b06dff53194
83 N4cab51b432c840e081b4a7f18787aae7 rdf:first sg:person.01216670420.40
84 rdf:rest N46ea5767642d4baa950b11dcb75b0311
85 N4f8cf859b5da4ecdbc99684452a6c6fb schema:name dimensions_id
86 schema:value pub.1038431838
87 rdf:type schema:PropertyValue
88 N5fa6b620ae394d05910567b7e0a1aac3 rdf:first sg:person.016711665305.74
89 rdf:rest rdf:nil
90 Nc364c06ccd254dacb2624eadee1aa7f7 schema:volumeNumber 396
91 rdf:type schema:PublicationVolume
92 Nc41b0670357f4766bf214e1f2f948ce4 schema:issueNumber 6712
93 rdf:type schema:PublicationIssue
94 Ne97d7f4d2aae4b8392fb8b06dff53194 rdf:first sg:person.010106465606.09
95 rdf:rest N2a7743e6bb524a94a6422801ebce00b3
96 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
97 schema:name Chemical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
100 schema:name Inorganic Chemistry
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Chemistry (incl. Structural)
104 rdf:type schema:DefinedTerm
105 sg:journal.1018957 schema:issn 0028-0836
106 1476-4687
107 schema:name Nature
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.010106465606.09 schema:affiliation grid-institutes:grid.5335.0
111 schema:familyName Rodriguez-Martinez
112 schema:givenName L. M.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106465606.09
114 rdf:type schema:Person
115 sg:person.01027355100.96 schema:affiliation grid-institutes:grid.482271.a
116 schema:familyName Cernik
117 schema:givenName R. J.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027355100.96
119 rdf:type schema:Person
120 sg:person.010746206436.61 schema:affiliation grid-institutes:grid.5335.0
121 schema:familyName Bell
122 schema:givenName A. M. T.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746206436.61
124 rdf:type schema:Person
125 sg:person.01216670420.40 schema:affiliation grid-institutes:grid.5335.0
126 schema:familyName Attfield
127 schema:givenName J. P.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216670420.40
129 rdf:type schema:Person
130 sg:person.014521343705.90 schema:affiliation grid-institutes:grid.4991.5
131 schema:familyName Clarke
132 schema:givenName J. F.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014521343705.90
134 rdf:type schema:Person
135 sg:person.016125327023.85 schema:affiliation grid-institutes:grid.34566.32
136 schema:familyName Greneche
137 schema:givenName J. M.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016125327023.85
139 rdf:type schema:Person
140 sg:person.016711665305.74 schema:affiliation grid-institutes:grid.4991.5
141 schema:familyName Perkins
142 schema:givenName D. A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016711665305.74
144 rdf:type schema:Person
145 sg:pub.10.1038/144327b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020600841
146 https://doi.org/10.1038/144327b0
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/33105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017343607
149 https://doi.org/10.1038/33105
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/375561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037624168
152 https://doi.org/10.1038/375561a0
153 rdf:type schema:CreativeWork
154 grid-institutes:grid.34566.32 schema:alternateName Laboratoire de Physique de l'Etat Condensé, UPRESA CNRS 6087, Université du Maine, 72085, Le Mans, France
155 schema:name Laboratoire de Physique de l'Etat Condensé, UPRESA CNRS 6087, Université du Maine, 72085, Le Mans, France
156 rdf:type schema:Organization
157 grid-institutes:grid.482271.a schema:alternateName Synchrotron Radiation Source, CLRC Daresbury Laboratory, WA4 4AD, Warrington, UK
158 schema:name Synchrotron Radiation Source, CLRC Daresbury Laboratory, WA4 4AD, Warrington, UK
159 rdf:type schema:Organization
160 grid-institutes:grid.4991.5 schema:alternateName Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK
161 schema:name Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford, UK
162 rdf:type schema:Organization
163 grid-institutes:grid.5335.0 schema:alternateName Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
164 IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK
165 schema:name Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
166 IRC in Superconductivity, University of Cambridge, Madingley Road, CB3 0HE, Cambridge, UK
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...