Intensity Fluctuation Spectroscopy of Motile Microorganisms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-03

AUTHORS

DALE W. SCHAEFER, GOON NKS, SEYMOUR S. ALPERT

ABSTRACT

LIGHT microscopy indicates that in Escherichia coli translational motility (‘running’) is accompanied by considerable side-to-side or wobble motion. Moreover, in the case of chemotactic strains Berg and Brown1 showed that a typical bacterium spends considerable time in a ‘twiddling’ state in which translation ceases in favour of jittering rotational motion. In both the running and twiddling state the amplitude of the non-translational component of motion is comparable with λ, the wavelength of light. It is reasonable to expect therefore that the dynamics of both wobble and twiddle motion can be studied by intensity fluctuation spectroscopy2 (IFS) of scattered laser light. We have examined the effects of wobble motion on the time dependence of the fluctuating light intensity scattered by a non-chemotactic mutant of E. coli whose motion is dominated by running with almost no twiddling. We conclude that IFS is sensitive primarily to the rotational component of the motion. More... »

PAGES

162-164

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/248162a0

DOI

http://dx.doi.org/10.1038/248162a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051804292

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4594530


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Culture Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viscosity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "SCHAEFER", 
        "givenName": "DALE W.", 
        "type": "Person"
      }, 
      {
        "familyName": "NKS", 
        "givenName": "GOON", 
        "type": "Person"
      }, 
      {
        "familyName": "ALPERT", 
        "givenName": "SEYMOUR S.", 
        "id": "sg:person.050636775.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.050636775.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0030-4018(71)90122-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002127744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(71)90122-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002127744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/245380a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006993053", 
          "https://doi.org/10.1038/245380a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/245380a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006993053", 
          "https://doi.org/10.1038/245380a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio244253a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009544320", 
          "https://doi.org/10.1038/newbio244253a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio244253a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009544320", 
          "https://doi.org/10.1038/newbio244253a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio244253a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009544320", 
          "https://doi.org/10.1038/newbio244253a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.69.9.2509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018074334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/239500a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028194584", 
          "https://doi.org/10.1038/239500a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/239500a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028194584", 
          "https://doi.org/10.1038/239500a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(71)86219-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047073093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/227242a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048117393", 
          "https://doi.org/10.1038/227242a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1972842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062243952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.180.4092.1293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062507679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081001653", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1974-03", 
    "datePublishedReg": "1974-03-01", 
    "description": "LIGHT microscopy indicates that in Escherichia coli translational motility (\u2018running\u2019) is accompanied by considerable side-to-side or wobble motion. Moreover, in the case of chemotactic strains Berg and Brown1 showed that a typical bacterium spends considerable time in a \u2018twiddling\u2019 state in which translation ceases in favour of jittering rotational motion. In both the running and twiddling state the amplitude of the non-translational component of motion is comparable with \u03bb, the wavelength of light. It is reasonable to expect therefore that the dynamics of both wobble and twiddle motion can be studied by intensity fluctuation spectroscopy2 (IFS) of scattered laser light. We have examined the effects of wobble motion on the time dependence of the fluctuating light intensity scattered by a non-chemotactic mutant of E. coli whose motion is dominated by running with almost no twiddling. We conclude that IFS is sensitive primarily to the rotational component of the motion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/248162a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5444", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "248"
      }
    ], 
    "name": "Intensity Fluctuation Spectroscopy of Motile Microorganisms", 
    "pagination": "162-164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f6c466dac1f85a9665b9a88c968a30d3fd142a68801f3f502db172877cd08499"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4594530"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/248162a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051804292"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/248162a0", 
      "https://app.dimensions.ai/details/publication/pub.1051804292"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/248162a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/248162a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/248162a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/248162a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/248162a0'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      45 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/248162a0 schema:about N01d26f0d084345daad7c8ee596237454
2 N6311918e521f4081bc75f0a66b50a981
3 N980db48d4d20482f95864ff17715b628
4 N9d8740ff7be54ea8924fcb79d7b413d3
5 Nd34a9f86494741f99d6507da013d9f1b
6 Nefc539a029f14ad1a9b19c69ea53f404
7 anzsrc-for:02
8 anzsrc-for:0299
9 schema:author N1f863110306941ddb888d964d8941994
10 schema:citation sg:pub.10.1038/227242a0
11 sg:pub.10.1038/239500a0
12 sg:pub.10.1038/245380a0
13 sg:pub.10.1038/newbio244253a0
14 https://app.dimensions.ai/details/publication/pub.1081001653
15 https://doi.org/10.1016/0030-4018(71)90122-2
16 https://doi.org/10.1016/s0006-3495(71)86219-7
17 https://doi.org/10.1073/pnas.69.9.2509
18 https://doi.org/10.1119/1.1972842
19 https://doi.org/10.1126/science.180.4092.1293
20 schema:datePublished 1974-03
21 schema:datePublishedReg 1974-03-01
22 schema:description LIGHT microscopy indicates that in Escherichia coli translational motility (‘running’) is accompanied by considerable side-to-side or wobble motion. Moreover, in the case of chemotactic strains Berg and Brown1 showed that a typical bacterium spends considerable time in a ‘twiddling’ state in which translation ceases in favour of jittering rotational motion. In both the running and twiddling state the amplitude of the non-translational component of motion is comparable with λ, the wavelength of light. It is reasonable to expect therefore that the dynamics of both wobble and twiddle motion can be studied by intensity fluctuation spectroscopy2 (IFS) of scattered laser light. We have examined the effects of wobble motion on the time dependence of the fluctuating light intensity scattered by a non-chemotactic mutant of E. coli whose motion is dominated by running with almost no twiddling. We conclude that IFS is sensitive primarily to the rotational component of the motion.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Nbd170a61368c4e4ca8dbe6a0447570c6
27 Nf8604670d2db43dfa85e008e9530e3cd
28 sg:journal.1018957
29 schema:name Intensity Fluctuation Spectroscopy of Motile Microorganisms
30 schema:pagination 162-164
31 schema:productId N1fbe006f4c3944358282cbda6a7a7569
32 N78c2ca6440be40fa98db66180979f658
33 N82e9077839c64d4b8661d1688dedfa3d
34 N9b0ca8e84ccd4797b0f294016c74c70c
35 Nc02fe5b592454623940ef91b9dcbdce2
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051804292
37 https://doi.org/10.1038/248162a0
38 schema:sdDatePublished 2019-04-10T12:59
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N3dfc5f3d84bb433cbf6c10fa6a6d2914
41 schema:url http://www.nature.com/articles/248162a0
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N01d26f0d084345daad7c8ee596237454 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
46 schema:name Models, Biological
47 rdf:type schema:DefinedTerm
48 N1982a9faa9ce485186ee3e6fe7b8158a rdf:first Nd75a94057f3d414eac6ae6db7f4e73b7
49 rdf:rest Ne4a6cdb025794fb396b30255f7441086
50 N1f863110306941ddb888d964d8941994 rdf:first Na86390ed5f774a8b813e9ae58938d0bd
51 rdf:rest N1982a9faa9ce485186ee3e6fe7b8158a
52 N1fbe006f4c3944358282cbda6a7a7569 schema:name pubmed_id
53 schema:value 4594530
54 rdf:type schema:PropertyValue
55 N3dfc5f3d84bb433cbf6c10fa6a6d2914 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N6311918e521f4081bc75f0a66b50a981 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Spectrum Analysis
59 rdf:type schema:DefinedTerm
60 N78c2ca6440be40fa98db66180979f658 schema:name doi
61 schema:value 10.1038/248162a0
62 rdf:type schema:PropertyValue
63 N82e9077839c64d4b8661d1688dedfa3d schema:name dimensions_id
64 schema:value pub.1051804292
65 rdf:type schema:PropertyValue
66 N980db48d4d20482f95864ff17715b628 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Escherichia coli
68 rdf:type schema:DefinedTerm
69 N9b0ca8e84ccd4797b0f294016c74c70c schema:name nlm_unique_id
70 schema:value 0410462
71 rdf:type schema:PropertyValue
72 N9d8740ff7be54ea8924fcb79d7b413d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Culture Media
74 rdf:type schema:DefinedTerm
75 Na86390ed5f774a8b813e9ae58938d0bd schema:familyName SCHAEFER
76 schema:givenName DALE W.
77 rdf:type schema:Person
78 Nbd170a61368c4e4ca8dbe6a0447570c6 schema:volumeNumber 248
79 rdf:type schema:PublicationVolume
80 Nc02fe5b592454623940ef91b9dcbdce2 schema:name readcube_id
81 schema:value f6c466dac1f85a9665b9a88c968a30d3fd142a68801f3f502db172877cd08499
82 rdf:type schema:PropertyValue
83 Nd34a9f86494741f99d6507da013d9f1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Cell Movement
85 rdf:type schema:DefinedTerm
86 Nd75a94057f3d414eac6ae6db7f4e73b7 schema:familyName NKS
87 schema:givenName GOON
88 rdf:type schema:Person
89 Ne4a6cdb025794fb396b30255f7441086 rdf:first sg:person.050636775.04
90 rdf:rest rdf:nil
91 Nefc539a029f14ad1a9b19c69ea53f404 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Viscosity
93 rdf:type schema:DefinedTerm
94 Nf8604670d2db43dfa85e008e9530e3cd schema:issueNumber 5444
95 rdf:type schema:PublicationIssue
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
100 schema:name Other Physical Sciences
101 rdf:type schema:DefinedTerm
102 sg:journal.1018957 schema:issn 0090-0028
103 1476-4687
104 schema:name Nature
105 rdf:type schema:Periodical
106 sg:person.050636775.04 schema:familyName ALPERT
107 schema:givenName SEYMOUR S.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.050636775.04
109 rdf:type schema:Person
110 sg:pub.10.1038/227242a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048117393
111 https://doi.org/10.1038/227242a0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/239500a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028194584
114 https://doi.org/10.1038/239500a0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/245380a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006993053
117 https://doi.org/10.1038/245380a0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/newbio244253a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009544320
120 https://doi.org/10.1038/newbio244253a0
121 rdf:type schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1081001653 schema:CreativeWork
123 https://doi.org/10.1016/0030-4018(71)90122-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002127744
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0006-3495(71)86219-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047073093
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1073/pnas.69.9.2509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018074334
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1119/1.1972842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062243952
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1126/science.180.4092.1293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062507679
132 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...