A new logic for DNA engineering using recombination in Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-10

AUTHORS

Y Zhang, F Buchholz, J P Muyrers, A F Stewart

ABSTRACT

A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA. More... »

PAGES

123-128

Journal

TITLE

Nature Genetics

ISSUE

2

VOLUME

20

Related Patents

  • Microorganisms For The Production Of 1,4-Butanediol
  • Methods For The Production Of Cells And Mammals With Desired Genetic Modifications
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Method For Detecting The Replacement Of An Endogenous Allele With A Modified Allele By Homologous Recombination In A Mouse Es Cell
  • Cell Extract Promoted Cloning
  • Microorganisms For The Production Of Methacrylic Acid
  • Compositions For Use In Recombinational Cloning Of Nucelic Acids
  • Methods Of Modifying Eukaryotic Cells
  • Methods Of Producing Hybrid Antibodies
  • Methods And Compositions For Synthesis Of Nucleic Acid Molecules Using Multiple Recognition Sites
  • Dna Cloning Method Relying On The E. Coli Rece/Rect Recombination System
  • Cells For The Production Of Helper Dependent Adenoviral Vectors
  • Methods Of Producing Hybrid Antibodies
  • Methods Of Making A Nucleic Acid Encoding A Human Variable Region
  • Methods Of Modifying Eukaryotic Cells
  • Methods And Organisms For Converting Synthesis Gas Or Other Gaseous Carbon Sources And Methanol To 1,3-Butanediol
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Animal Models And Therapeutic Molecules
  • Insertion Sequence-Free Bacteria
  • Bacteria With Reduced Genome
  • Anti-Il-20, Anti-Il22 And Anti-Il-22ra Antibodies And Binding Partners And Methods Of Using In Inflammation
  • Antibody Producing Non-Human Mammals
  • Microorganisms And Methods For The Co-Production Of Isopropanol And 1,4-Butanediol
  • Adam6 Mice
  • Plasmids And Phages For Homologous Recombination And Methods Of Use
  • Homologous Recombination Method, Cloning Method, And Kit
  • Genetically Modified Mice That Produce Hybrid Antibodies
  • Novel Dna Cloning Method Relying On The E. Coli Rece/Rect Recombination System
  • Vaccination Against Host Cell-Associated Herpes Viruses
  • Methods And Organisms For Converting Synthesis Gas Or Other Gaseous Carbon Sources And Methanol To 1,3-Butanediol
  • Recombinational Cloning Using Nucleic Acids Having Recombination Sites
  • Prophage Element-Free Bacteria
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Insertion Sequence-Free Bacteria
  • Rapid Subcloning Using Site-Specific Recombination
  • Microorganisms And Methods For Carbon-Efficient Biosynthesis Of Mek And 2-Butanol
  • Methods For The Synthesis Of Olefins And Derivatives
  • Rapid Growing Microorganisms For Biotechnology Applications
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Method For Constructing And Modifying Large Dna Molecules
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Biosynthesis Of Butadiene
  • Use Of Meganucleases For Inducing Homologous Recombination Ex Vivo And In Toto In Vertebrate Somatic Tissues And Application Thereof
  • Plasmids And Phages For Homologous Recombination And Methods Of Use
  • Humanized Universal Light Chain Mice
  • Humanized Light Chain Mice
  • Microorganisms And Methods For The Biosynthesis Of Propylene
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Adam6 Mice
  • Adam6 Mice
  • Animal Models And Therapeutic Molecules
  • Neuropeptide Release Assay For Sodium Channels
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Host Cells Deficient For Mismatch Repair And Their Use In Methods For Inducing Homologous Recombination Using Single-Stranded Nucleic Acids
  • Ribocloning: Recombinant Dna Construction Using Primers With Ribo Bases
  • Recombinational Cloning Using Engineered Recombination Sites
  • Homologous Recombination-Based Nucleic Acid Molecular Cloning Method And Related Kit
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Process Of Separating Components Of A Fermentation Broth
  • Dna Cloning Method
  • Methods Of Producing Hybrid Antibodies
  • Plasmids And Phages For Homologous Recombination And Methods Of Use
  • Iterative Assembly And Disassembly Of Predetermined, Artificial Dna Constructs And The Specific Exchange Of Functional Genetic Elements
  • Transgenic Mouse Homozygous For Chimeric Igh Locus
  • Animal Models And Therapeutic Molecules
  • Adam6 Mice
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Compositions For Use In Recombinational Cloning Of Nucleic Acids
  • Neuropeptide Release Assay For Sodium Channels
  • Adam6 Mice
  • Organisms For The Production Of 1,3-Butanediol
  • Adam6 Mice
  • Microorganisms And Methods For The Biosynthesis Of Aromatics, 2,4-Pentadienoate And 1,3-Butadiene
  • Animal Models And Therapeutic Molecules
  • Bacteria With Reduced Genome
  • Plasmids And Phages For Homologous Recombination And Methods Of Use
  • Engineered Listeria And Methods Of Use Thereof
  • Compositions For Use In Recombinational Cloning Of Nucleic Acids
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods And Compositions For Synthesis Of Nucleic Acid Molecules Using Multiple Recognition Sites
  • Use Of Meganucleases For Inducing Homologous Recombination Ex Vivo And In Toto In Vertebrate Somatic Tissues And Application Thereof
  • Methods Of Modifying Eukaryotic Cells
  • Rapid And Enzymeless Cloning Of Nucleic Acid Fragments
  • Enhanced Packaging Of Herpes Virus Amplicons And Generation Of Recombinant Virus Vectors
  • Chimaeric Surrogate Light Chains (Slc) Comprising Human Vpreb
  • Animal Models And Therapeutic Molecules
  • Direct Cloning
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Neuropeptide Release Assay For Sodium Channels
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Method Of Screening And Quantifying Various Enzymatic Activities Using Artificial Genetic Circuits
  • Antibodies, Variable Domains And Chains Tailored For Human Use
  • Manipulation Of Immunoglobulin Gene Diversity And Multi-Antibody Therapeutics
  • Methods And Compositions For Seamless Cloning Of Nucleic Acid Molecules
  • Engineered Listeria And Methods Of Use Thereof
  • Adam6 Mice
  • Animal Models And Therapeutic Molecules
  • Antibody Producing Non-Human Mammals
  • Animal Models And Therapeutic Molecules
  • Animal Models And Therapeutic Molecules
  • Antibody Producing Non-Human Mammals
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Murine Model For Male Infertility Obtained By Glucocorticoid-Induced Leucine Zipper Gene Inactivation, Method For The Preparation And Relative Uses
  • Methods Of Producing Hybrid Antibodies
  • Enhanced Homologous Recombination Mediated By Lambda Recombination Proteins
  • Recombination Cloning Using Engineered Recombination Sites
  • Microorganisms For The Production Of 1,4-Butanediol
  • Modulation Of Immune Responses By The Poxviral K4 Protein
  • Methods Of Modifying Eukaryotic Cells
  • Viral Delivery System For Infectious Transfer Of Large Genomic Dna Inserts
  • Nucleic Acid Molecules Containing Recombination Sites And Methods Of Using The Same
  • Glycosyl Hydrolases
  • Methods Of Modifying Eukaryotic Cells
  • Recombinational Cloning Using Engineered Recombination Sites
  • Cell Extract Promoted Cloning
  • Cloning, Integration And Expression Of A Gene Cluster Comprises Using Gene Cassettes Comprising Sequences That Mediate The Transfer, Integration And Expression Of A Flanked Nucleic Acid
  • Heterologous Hosts
  • Nucleic Acid Molecule Of A Biosynthetic Cluster Encoding Non Ribosomal Peptide Synthases And Uses Thereof
  • Method Of Altering Nucleic Acids
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Primary Alcohol Producing Organisms
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Adam6 Mice
  • Methods For Increasing Product Yields
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Systems For In Vivo Site-Directed Mutagenesis Using Oligonucleotides
  • Microorganisms For The Production Of 1,4-Butanediol
  • In Vivo Genome-Wide Mutagenesis
  • Animal Models And Therapeutic Molecules
  • Recombinational Cloning Using Engineered Recombination Sites
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Primary Alcohol Producing Organisms
  • Methods And Compositions For Directed Cloning And Subcloning Using Homologous Recombination
  • Recombinational Cloning Using Engineered Recombination Sites
  • I-Crei Derived Single-Chain Meganuclease And Uses Thereof
  • Nucleic Acid Molecules Containing Recombination Sites And Methods Of Using The Same
  • Organisms For The Production Of Isopropanol, N-Butanol, And Isobutanol
  • Use Of Meganucleases For Inducing Homologous Recombination Ex Vivo And In Toto In Vertebrate Somatic Tissues And Application Thereof
  • Animal Models And Therapeutic Molecules
  • Animal Models And Therapeutic Molecules
  • Hybrid Antibodies Comprising Human Variable Regions And Mouse Constant Regions Produced In A Genetically Modified Mouse
  • Antibody Producing Non-Human Mammals
  • Animal Models And Therapeutic Molecules
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/2417

    DOI

    http://dx.doi.org/10.1038/2417

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002783524

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9771703


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exodeoxyribonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Point Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombination, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "European Molecular Biology Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.4709.a", 
              "name": [
                "Gene Expression Program, European Molecular Biology Laboratory, Heidelberg, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Y", 
            "id": "sg:person.01160506447.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160506447.47"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Buchholz", 
            "givenName": "F", 
            "id": "sg:person.01333645642.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333645642.87"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Muyrers", 
            "givenName": "J P", 
            "id": "sg:person.01210564370.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210564370.12"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Stewart", 
            "givenName": "A F", 
            "id": "sg:person.01252051757.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252051757.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0378-1119(95)00858-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004784514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(92)90263-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005129440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(92)90263-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005129440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.75.9.4242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006403039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.1991.tb00791.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006429967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(76)80025-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007259661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/21.22.5192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007294193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/24.21.4256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011044668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/24.17.3469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013269537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.67.1.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013912746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.26.14759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014770755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(83)90331-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016453858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.89.18.8794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018026304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-9525(93)90104-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019985929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/26.6.1427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022434247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/24.22.4594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025144584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0194-84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027542612", 
              "https://doi.org/10.1038/ng0194-84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.4.1414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028135533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0997-859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031958037", 
              "https://doi.org/10.1038/nbt0997-859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/21.14.3329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032385012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/21.15.3601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037122693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.9.5121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040409096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.1994.tb00286.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041108644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.70.11.3240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041686183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0958-1669(94)90068-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043653805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.5.2509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044133693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.8.3205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045382979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.87.1.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047118258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(92)90682-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048256565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.273.20.12274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049279397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/24.15.3118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050571566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(94)90778-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053097274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(94)90778-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053097274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.1984.049.01.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060405599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2660262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062549379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2999980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062580102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.171.5.2609-2613.1989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062717876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.171.9.4617-4622.1989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062718176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.173.18.5808-5821.1991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062719737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.175.1.277-287.1993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062721569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.176.22.7024-7031.1994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062723271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.179.20.6228-6237.1997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062726351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079465252", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079492588", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079661960", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080476311", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081559945", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082903989", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083068526", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083248207", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-10", 
        "datePublishedReg": "1998-10-01", 
        "description": "A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/2417", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "A new logic for DNA engineering using recombination in Escherichia\ncoli", 
        "pagination": "123-128", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0d4110f8b76db5e9247f4f4a94f26e3025239c2df4183f421e008a03cf4978c3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9771703"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9216904"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/2417"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002783524"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/2417", 
          "https://app.dimensions.ai/details/publication/pub.1002783524"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53977_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/ng/journal/v20/n2/full/ng1098_123.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/2417'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/2417'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/2417'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/2417'


     

    This table displays all metadata directly associated to this object as RDF triples.

    269 TRIPLES      21 PREDICATES      88 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/2417 schema:about N189ec7bf38dc4242b9bc78aacffdb9b6
    2 N3f88e38aa47d46a4af1046426573d979
    3 N49371eed66424f05a407b06e2f290137
    4 N6804ffa172864a539ee2379be7d15bee
    5 N6c9243f6666148399a2bb2dca0150733
    6 N6e2be4cc272b462db681db1660cbecda
    7 N79cd1df41e2c442ba91bddde54fe2761
    8 Na1910e6723254aa38017552ae1bb8438
    9 Na3f792963c514cfcaa193ab9dd93f04c
    10 Nb2e479e538234fffb090391a92571475
    11 Ndf212376f98c4c1c9824e7fdeff0ec7c
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author Nb5be783e41a4445d8496c517a9081a69
    15 schema:citation sg:pub.10.1038/nbt0997-859
    16 sg:pub.10.1038/ng0194-84
    17 https://app.dimensions.ai/details/publication/pub.1079465252
    18 https://app.dimensions.ai/details/publication/pub.1079492588
    19 https://app.dimensions.ai/details/publication/pub.1079661960
    20 https://app.dimensions.ai/details/publication/pub.1080476311
    21 https://app.dimensions.ai/details/publication/pub.1081559945
    22 https://app.dimensions.ai/details/publication/pub.1082903989
    23 https://app.dimensions.ai/details/publication/pub.1083068526
    24 https://app.dimensions.ai/details/publication/pub.1083248207
    25 https://doi.org/10.1016/0022-2836(92)90682-a
    26 https://doi.org/10.1016/0092-8674(83)90331-8
    27 https://doi.org/10.1016/0168-9525(93)90104-p
    28 https://doi.org/10.1016/0378-1119(92)90263-o
    29 https://doi.org/10.1016/0378-1119(94)90778-1
    30 https://doi.org/10.1016/0378-1119(95)00858-6
    31 https://doi.org/10.1016/0958-1669(94)90068-x
    32 https://doi.org/10.1016/s0022-5193(76)80025-2
    33 https://doi.org/10.1073/pnas.67.1.128
    34 https://doi.org/10.1073/pnas.70.11.3240
    35 https://doi.org/10.1073/pnas.75.9.4242
    36 https://doi.org/10.1073/pnas.87.1.103
    37 https://doi.org/10.1073/pnas.89.18.8794
    38 https://doi.org/10.1073/pnas.91.8.3205
    39 https://doi.org/10.1073/pnas.94.26.14759
    40 https://doi.org/10.1073/pnas.94.4.1414
    41 https://doi.org/10.1073/pnas.95.5.2509
    42 https://doi.org/10.1073/pnas.95.9.5121
    43 https://doi.org/10.1074/jbc.273.20.12274
    44 https://doi.org/10.1093/nar/21.14.3329
    45 https://doi.org/10.1093/nar/21.15.3601
    46 https://doi.org/10.1093/nar/21.22.5192
    47 https://doi.org/10.1093/nar/24.15.3118
    48 https://doi.org/10.1093/nar/24.17.3469
    49 https://doi.org/10.1093/nar/24.21.4256
    50 https://doi.org/10.1093/nar/24.22.4594
    51 https://doi.org/10.1093/nar/26.6.1427
    52 https://doi.org/10.1101/sqb.1984.049.01.051
    53 https://doi.org/10.1111/j.1365-2958.1991.tb00791.x
    54 https://doi.org/10.1111/j.1365-2958.1994.tb00286.x
    55 https://doi.org/10.1126/science.2660262
    56 https://doi.org/10.1126/science.2999980
    57 https://doi.org/10.1128/jb.171.5.2609-2613.1989
    58 https://doi.org/10.1128/jb.171.9.4617-4622.1989
    59 https://doi.org/10.1128/jb.173.18.5808-5821.1991
    60 https://doi.org/10.1128/jb.175.1.277-287.1993
    61 https://doi.org/10.1128/jb.176.22.7024-7031.1994
    62 https://doi.org/10.1128/jb.179.20.6228-6237.1997
    63 schema:datePublished 1998-10
    64 schema:datePublishedReg 1998-10-01
    65 schema:description A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree false
    69 schema:isPartOf N9d613c0e00134261a1419c589ce9ea61
    70 Na4d49240467b4417afad93bd5ccac82b
    71 sg:journal.1103138
    72 schema:name A new logic for DNA engineering using recombination in Escherichia coli
    73 schema:pagination 123-128
    74 schema:productId N77e862acbc6440da9c613e73e213bb70
    75 Nad6dd64747864a879ce7b8c305ad8141
    76 Nb6e82a3cf5a3410eacce5046559ec47b
    77 Ne8cbdca328994cf59089f14758c86390
    78 Nf6d5c5e1e40e4fe29be0ff5e96930b05
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002783524
    80 https://doi.org/10.1038/2417
    81 schema:sdDatePublished 2019-04-11T12:10
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Nfb273a9b22794cdabba655f289376a39
    84 schema:url http://www.nature.com/ng/journal/v20/n2/full/ng1098_123.html
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N189ec7bf38dc4242b9bc78aacffdb9b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Escherichia coli Proteins
    90 rdf:type schema:DefinedTerm
    91 N3f88e38aa47d46a4af1046426573d979 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Bacterial Proteins
    93 rdf:type schema:DefinedTerm
    94 N49371eed66424f05a407b06e2f290137 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Plasmids
    96 rdf:type schema:DefinedTerm
    97 N5ddf8648dd334b3ebb6ca23ef6817e2a rdf:first sg:person.01252051757.84
    98 rdf:rest rdf:nil
    99 N6804ffa172864a539ee2379be7d15bee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Exodeoxyribonucleases
    101 rdf:type schema:DefinedTerm
    102 N6c9243f6666148399a2bb2dca0150733 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Point Mutation
    104 rdf:type schema:DefinedTerm
    105 N6e2be4cc272b462db681db1660cbecda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name DNA-Binding Proteins
    107 rdf:type schema:DefinedTerm
    108 N77e862acbc6440da9c613e73e213bb70 schema:name nlm_unique_id
    109 schema:value 9216904
    110 rdf:type schema:PropertyValue
    111 N79cd1df41e2c442ba91bddde54fe2761 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Escherichia coli
    113 rdf:type schema:DefinedTerm
    114 N7a17522a25954fecbf904d31128dba3b rdf:first sg:person.01210564370.12
    115 rdf:rest N5ddf8648dd334b3ebb6ca23ef6817e2a
    116 N93d202fdbc594f1f9bf78e397fa20db1 rdf:first sg:person.01333645642.87
    117 rdf:rest N7a17522a25954fecbf904d31128dba3b
    118 N9d613c0e00134261a1419c589ce9ea61 schema:issueNumber 2
    119 rdf:type schema:PublicationIssue
    120 Na1910e6723254aa38017552ae1bb8438 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Recombination, Genetic
    122 rdf:type schema:DefinedTerm
    123 Na3f792963c514cfcaa193ab9dd93f04c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Genetic Engineering
    125 rdf:type schema:DefinedTerm
    126 Na4d49240467b4417afad93bd5ccac82b schema:volumeNumber 20
    127 rdf:type schema:PublicationVolume
    128 Nad6dd64747864a879ce7b8c305ad8141 schema:name dimensions_id
    129 schema:value pub.1002783524
    130 rdf:type schema:PropertyValue
    131 Nb2e479e538234fffb090391a92571475 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Polymerase Chain Reaction
    133 rdf:type schema:DefinedTerm
    134 Nb5be783e41a4445d8496c517a9081a69 rdf:first sg:person.01160506447.47
    135 rdf:rest N93d202fdbc594f1f9bf78e397fa20db1
    136 Nb6e82a3cf5a3410eacce5046559ec47b schema:name pubmed_id
    137 schema:value 9771703
    138 rdf:type schema:PropertyValue
    139 Ndf212376f98c4c1c9824e7fdeff0ec7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name DNA, Bacterial
    141 rdf:type schema:DefinedTerm
    142 Ne8cbdca328994cf59089f14758c86390 schema:name readcube_id
    143 schema:value 0d4110f8b76db5e9247f4f4a94f26e3025239c2df4183f421e008a03cf4978c3
    144 rdf:type schema:PropertyValue
    145 Nf6d5c5e1e40e4fe29be0ff5e96930b05 schema:name doi
    146 schema:value 10.1038/2417
    147 rdf:type schema:PropertyValue
    148 Nfb273a9b22794cdabba655f289376a39 schema:name Springer Nature - SN SciGraph project
    149 rdf:type schema:Organization
    150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Biological Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Genetics
    155 rdf:type schema:DefinedTerm
    156 sg:journal.1103138 schema:issn 1061-4036
    157 1546-1718
    158 schema:name Nature Genetics
    159 rdf:type schema:Periodical
    160 sg:person.01160506447.47 schema:affiliation https://www.grid.ac/institutes/grid.4709.a
    161 schema:familyName Zhang
    162 schema:givenName Y
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160506447.47
    164 rdf:type schema:Person
    165 sg:person.01210564370.12 schema:familyName Muyrers
    166 schema:givenName J P
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210564370.12
    168 rdf:type schema:Person
    169 sg:person.01252051757.84 schema:familyName Stewart
    170 schema:givenName A F
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252051757.84
    172 rdf:type schema:Person
    173 sg:person.01333645642.87 schema:familyName Buchholz
    174 schema:givenName F
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333645642.87
    176 rdf:type schema:Person
    177 sg:pub.10.1038/nbt0997-859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031958037
    178 https://doi.org/10.1038/nbt0997-859
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/ng0194-84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027542612
    181 https://doi.org/10.1038/ng0194-84
    182 rdf:type schema:CreativeWork
    183 https://app.dimensions.ai/details/publication/pub.1079465252 schema:CreativeWork
    184 https://app.dimensions.ai/details/publication/pub.1079492588 schema:CreativeWork
    185 https://app.dimensions.ai/details/publication/pub.1079661960 schema:CreativeWork
    186 https://app.dimensions.ai/details/publication/pub.1080476311 schema:CreativeWork
    187 https://app.dimensions.ai/details/publication/pub.1081559945 schema:CreativeWork
    188 https://app.dimensions.ai/details/publication/pub.1082903989 schema:CreativeWork
    189 https://app.dimensions.ai/details/publication/pub.1083068526 schema:CreativeWork
    190 https://app.dimensions.ai/details/publication/pub.1083248207 schema:CreativeWork
    191 https://doi.org/10.1016/0022-2836(92)90682-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048256565
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/0092-8674(83)90331-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016453858
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/0168-9525(93)90104-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1019985929
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0378-1119(92)90263-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1005129440
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/0378-1119(94)90778-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053097274
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/0378-1119(95)00858-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784514
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/0958-1669(94)90068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043653805
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/s0022-5193(76)80025-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007259661
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1073/pnas.67.1.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013912746
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1073/pnas.70.11.3240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041686183
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1073/pnas.75.9.4242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006403039
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1073/pnas.87.1.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047118258
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1073/pnas.89.18.8794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018026304
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1073/pnas.91.8.3205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045382979
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1073/pnas.94.26.14759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014770755
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1073/pnas.94.4.1414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028135533
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1073/pnas.95.5.2509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044133693
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1073/pnas.95.9.5121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040409096
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1074/jbc.273.20.12274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049279397
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/nar/21.14.3329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385012
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1093/nar/21.15.3601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037122693
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1093/nar/21.22.5192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007294193
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1093/nar/24.15.3118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050571566
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1093/nar/24.17.3469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013269537
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1093/nar/24.21.4256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011044668
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/nar/24.22.4594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025144584
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/nar/26.6.1427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022434247
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1101/sqb.1984.049.01.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060405599
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1111/j.1365-2958.1991.tb00791.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006429967
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1111/j.1365-2958.1994.tb00286.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041108644
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1126/science.2660262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549379
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1126/science.2999980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062580102
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1128/jb.171.5.2609-2613.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062717876
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1128/jb.171.9.4617-4622.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062718176
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1128/jb.173.18.5808-5821.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062719737
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1128/jb.175.1.277-287.1993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062721569
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1128/jb.176.22.7024-7031.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062723271
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1128/jb.179.20.6228-6237.1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062726351
    266 rdf:type schema:CreativeWork
    267 https://www.grid.ac/institutes/grid.4709.a schema:alternateName European Molecular Biology Laboratory
    268 schema:name Gene Expression Program, European Molecular Biology Laboratory, Heidelberg, Germany.
    269 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...