A new logic for DNA engineering using recombination in Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-10

AUTHORS

Y Zhang, F Buchholz, J P Muyrers, A F Stewart

ABSTRACT

A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA. More... »

PAGES

123-128

Journal

TITLE

Nature Genetics

ISSUE

2

VOLUME

20

Related Patents

  • Microorganisms For The Production Of 1,4-Butanediol
  • Dna Cloning Method Relying On The E. Coli Rece/Rect Recombination System
  • Cells For The Production Of Helper Dependent Adenoviral Vectors
  • Insertion Sequence-Free Bacteria
  • Bacteria With Reduced Genome
  • Anti-Il-20, Anti-Il22 And Anti-Il-22ra Antibodies And Binding Partners And Methods Of Using In Inflammation
  • Antibody Producing Non-Human Mammals
  • Microorganisms And Methods For The Co-Production Of Isopropanol And 1,4-Butanediol
  • Adam6 Mice
  • Plasmids And Phages For Homologous Recombination And Methods Of Use
  • Homologous Recombination Method, Cloning Method, And Kit
  • Genetically Modified Mice That Produce Hybrid Antibodies
  • Novel Dna Cloning Method Relying On The E. Coli Rece/Rect Recombination System
  • Vaccination Against Host Cell-Associated Herpes Viruses
  • Methods And Organisms For Converting Synthesis Gas Or Other Gaseous Carbon Sources And Methanol To 1,3-Butanediol
  • Recombinational Cloning Using Nucleic Acids Having Recombination Sites
  • Prophage Element-Free Bacteria
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Methods For The Production Of Cells And Mammals With Desired Genetic Modifications
  • Methods Of Modifying Eukaryotic Cells
  • Methods And Organisms For Converting Synthesis Gas Or Other Gaseous Carbon Sources And Methanol To 1,3-Butanediol
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Methods And Compositions For Synthesis Of Nucleic Acid Molecules Using Multiple Recognition Sites
  • Cell Extract Promoted Cloning
  • Microorganisms For The Production Of Methacrylic Acid
  • Compositions For Use In Recombinational Cloning Of Nucelic Acids
  • Method For Detecting The Replacement Of An Endogenous Allele With A Modified Allele By Homologous Recombination In A Mouse Es Cell
  • Methods Of Producing Hybrid Antibodies
  • Methods Of Making A Nucleic Acid Encoding A Human Variable Region
  • Methods Of Modifying Eukaryotic Cells
  • Animal Models And Therapeutic Molecules
  • Methods Of Producing Hybrid Antibodies
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Rapid Growing Microorganisms For Biotechnology Applications
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Method For Constructing And Modifying Large Dna Molecules
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Biosynthesis Of Butadiene
  • Use Of Meganucleases For Inducing Homologous Recombination Ex Vivo And In Toto In Vertebrate Somatic Tissues And Application Thereof
  • Plasmids And Phages For Homologous Recombination And Methods Of Use
  • Humanized Universal Light Chain Mice
  • Humanized Light Chain Mice
  • Microorganisms And Methods For The Biosynthesis Of Propylene
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Adam6 Mice
  • Adam6 Mice
  • Animal Models And Therapeutic Molecules
  • Neuropeptide Release Assay For Sodium Channels
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Host Cells Deficient For Mismatch Repair And Their Use In Methods For Inducing Homologous Recombination Using Single-Stranded Nucleic Acids
  • Ribocloning: Recombinant Dna Construction Using Primers With Ribo Bases
  • Recombinational Cloning Using Engineered Recombination Sites
  • Homologous Recombination-Based Nucleic Acid Molecular Cloning Method And Related Kit
  • Dna Cloning Method
  • Insertion Sequence-Free Bacteria
  • Process Of Separating Components Of A Fermentation Broth
  • Methods For The Synthesis Of Olefins And Derivatives
  • Rapid Subcloning Using Site-Specific Recombination
  • Microorganisms And Methods For Carbon-Efficient Biosynthesis Of Mek And 2-Butanol
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Methods Of Producing Hybrid Antibodies
  • Plasmids And Phages For Homologous Recombination And Methods Of Use
  • Iterative Assembly And Disassembly Of Predetermined, Artificial Dna Constructs And The Specific Exchange Of Functional Genetic Elements
  • Transgenic Mouse Homozygous For Chimeric Igh Locus
  • Animal Models And Therapeutic Molecules
  • Adam6 Mice
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Compositions For Use In Recombinational Cloning Of Nucleic Acids
  • Engineered Listeria And Methods Of Use Thereof
  • Compositions For Use In Recombinational Cloning Of Nucleic Acids
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods And Compositions For Synthesis Of Nucleic Acid Molecules Using Multiple Recognition Sites
  • Use Of Meganucleases For Inducing Homologous Recombination Ex Vivo And In Toto In Vertebrate Somatic Tissues And Application Thereof
  • Direct Cloning
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Neuropeptide Release Assay For Sodium Channels
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Methods Of Modifying Eukaryotic Cells
  • Rapid And Enzymeless Cloning Of Nucleic Acid Fragments
  • Enhanced Packaging Of Herpes Virus Amplicons And Generation Of Recombinant Virus Vectors
  • Chimaeric Surrogate Light Chains (Slc) Comprising Human Vpreb
  • Animal Models And Therapeutic Molecules
  • Microorganisms And Methods For The Biosynthesis Of Aromatics, 2,4-Pentadienoate And 1,3-Butadiene
  • Animal Models And Therapeutic Molecules
  • Bacteria With Reduced Genome
  • Plasmids And Phages For Homologous Recombination And Methods Of Use
  • Adam6 Mice
  • Adam6 Mice
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Neuropeptide Release Assay For Sodium Channels
  • Organisms For The Production Of 1,3-Butanediol
  • Method Of Screening And Quantifying Various Enzymatic Activities Using Artificial Genetic Circuits
  • Antibodies, Variable Domains And Chains Tailored For Human Use
  • Manipulation Of Immunoglobulin Gene Diversity And Multi-Antibody Therapeutics
  • Methods And Compositions For Seamless Cloning Of Nucleic Acid Molecules
  • Engineered Listeria And Methods Of Use Thereof
  • Adam6 Mice
  • Animal Models And Therapeutic Molecules
  • Antibody Producing Non-Human Mammals
  • Animal Models And Therapeutic Molecules
  • Glycosyl Hydrolases
  • Methods Of Modifying Eukaryotic Cells
  • Recombinational Cloning Using Engineered Recombination Sites
  • Microorganisms For The Production Of 1,4-Butanediol
  • Nucleic Acid Molecule Of A Biosynthetic Cluster Encoding Non Ribosomal Peptide Synthases And Uses Thereof
  • Heterologous Hosts
  • Microbial Organisms Comprising Exogenous Nucleic Acids Encoding Reductive Tca Pathway Enzymes
  • Murine Model For Male Infertility Obtained By Glucocorticoid-Induced Leucine Zipper Gene Inactivation, Method For The Preparation And Relative Uses
  • Recombination Cloning Using Engineered Recombination Sites
  • Viral Delivery System For Infectious Transfer Of Large Genomic Dna Inserts
  • Methods Of Modifying Eukaryotic Cells
  • Enhanced Homologous Recombination Mediated By Lambda Recombination Proteins
  • Cloning, Integration And Expression Of A Gene Cluster Comprises Using Gene Cassettes Comprising Sequences That Mediate The Transfer, Integration And Expression Of A Flanked Nucleic Acid
  • Cell Extract Promoted Cloning
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Heterologous Hosts
  • Methods Of Producing Hybrid Antibodies
  • Nucleic Acid Molecules Containing Recombination Sites And Methods Of Using The Same
  • Modulation Of Immune Responses By The Poxviral K4 Protein
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Adam6 Mice
  • Animal Models And Therapeutic Molecules
  • Systems For In Vivo Site-Directed Mutagenesis Using Oligonucleotides
  • Methods For Increasing Product Yields
  • In Vivo Genome-Wide Mutagenesis
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Use Of Meganucleases For Inducing Homologous Recombination Ex Vivo And In Toto In Vertebrate Somatic Tissues And Application Thereof
  • Methods And Compositions For Directed Cloning And Subcloning Using Homologous Recombination
  • Recombinational Cloning Using Engineered Recombination Sites
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Method Of Altering Nucleic Acids
  • Primary Alcohol Producing Organisms
  • Antibody Producing Non-Human Mammals
  • Primary Alcohol Producing Organisms
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Organisms For The Production Of Isopropanol, N-Butanol, And Isobutanol
  • Hybrid Antibodies Comprising Human Variable Regions And Mouse Constant Regions Produced In A Genetically Modified Mouse
  • Animal Models And Therapeutic Molecules
  • Animal Models And Therapeutic Molecules
  • Animal Models And Therapeutic Molecules
  • Microorganisms For The Production Of 1,4-Butanediol
  • Recombinational Cloning Using Engineered Recombination Sites
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Nucleic Acid Molecules Containing Recombination Sites And Methods Of Using The Same
  • I-Crei Derived Single-Chain Meganuclease And Uses Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/2417

    DOI

    http://dx.doi.org/10.1038/2417

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002783524

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9771703


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exodeoxyribonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Point Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombination, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "European Molecular Biology Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.4709.a", 
              "name": [
                "Gene Expression Program, European Molecular Biology Laboratory, Heidelberg, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Y", 
            "id": "sg:person.01160506447.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160506447.47"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Buchholz", 
            "givenName": "F", 
            "id": "sg:person.01333645642.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333645642.87"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Muyrers", 
            "givenName": "J P", 
            "id": "sg:person.01210564370.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210564370.12"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Stewart", 
            "givenName": "A F", 
            "id": "sg:person.01252051757.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252051757.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0378-1119(95)00858-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004784514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(92)90263-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005129440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(92)90263-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005129440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.75.9.4242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006403039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.1991.tb00791.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006429967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(76)80025-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007259661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/21.22.5192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007294193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/24.21.4256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011044668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/24.17.3469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013269537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.67.1.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013912746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.26.14759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014770755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(83)90331-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016453858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.89.18.8794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018026304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-9525(93)90104-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019985929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/26.6.1427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022434247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/24.22.4594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025144584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0194-84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027542612", 
              "https://doi.org/10.1038/ng0194-84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.4.1414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028135533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0997-859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031958037", 
              "https://doi.org/10.1038/nbt0997-859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/21.14.3329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032385012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/21.15.3601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037122693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.9.5121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040409096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.1994.tb00286.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041108644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.70.11.3240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041686183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0958-1669(94)90068-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043653805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.5.2509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044133693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.8.3205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045382979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.87.1.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047118258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(92)90682-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048256565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.273.20.12274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049279397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/24.15.3118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050571566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(94)90778-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053097274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(94)90778-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053097274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.1984.049.01.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060405599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2660262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062549379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2999980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062580102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.171.5.2609-2613.1989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062717876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.171.9.4617-4622.1989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062718176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.173.18.5808-5821.1991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062719737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.175.1.277-287.1993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062721569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.176.22.7024-7031.1994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062723271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.179.20.6228-6237.1997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062726351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079465252", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079492588", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079661960", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080476311", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081559945", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082903989", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083068526", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083248207", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-10", 
        "datePublishedReg": "1998-10-01", 
        "description": "A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/2417", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "A new logic for DNA engineering using recombination in Escherichia\ncoli", 
        "pagination": "123-128", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0d4110f8b76db5e9247f4f4a94f26e3025239c2df4183f421e008a03cf4978c3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9771703"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9216904"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/2417"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002783524"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/2417", 
          "https://app.dimensions.ai/details/publication/pub.1002783524"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53977_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/ng/journal/v20/n2/full/ng1098_123.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/2417'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/2417'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/2417'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/2417'


     

    This table displays all metadata directly associated to this object as RDF triples.

    269 TRIPLES      21 PREDICATES      88 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/2417 schema:about N101a72480a23492cb714815a3bb1b6e9
    2 N2b635c0951334cc7ba81296a28fae1f3
    3 N2f86fcd5a9f641938bee297f33328d02
    4 N521b1c46f74e484fab498663f79a869f
    5 N7dc9b527b551410eb1df726126eca20d
    6 Nacef9e5c6c28421aa51920c3c03c7e17
    7 Nb3eb3be93d53474d8050c26408c24214
    8 Nc5ddfd26d0bc4b9584349fff34aaee09
    9 Ncd8e19e4968745528a7be89d86229e6b
    10 Ne186e643405d4753b37ee3106a3b9f2b
    11 Nf4137a19be8c4109ab77f1610592e281
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author Nf510816e601946458bfca3462fbc5b30
    15 schema:citation sg:pub.10.1038/nbt0997-859
    16 sg:pub.10.1038/ng0194-84
    17 https://app.dimensions.ai/details/publication/pub.1079465252
    18 https://app.dimensions.ai/details/publication/pub.1079492588
    19 https://app.dimensions.ai/details/publication/pub.1079661960
    20 https://app.dimensions.ai/details/publication/pub.1080476311
    21 https://app.dimensions.ai/details/publication/pub.1081559945
    22 https://app.dimensions.ai/details/publication/pub.1082903989
    23 https://app.dimensions.ai/details/publication/pub.1083068526
    24 https://app.dimensions.ai/details/publication/pub.1083248207
    25 https://doi.org/10.1016/0022-2836(92)90682-a
    26 https://doi.org/10.1016/0092-8674(83)90331-8
    27 https://doi.org/10.1016/0168-9525(93)90104-p
    28 https://doi.org/10.1016/0378-1119(92)90263-o
    29 https://doi.org/10.1016/0378-1119(94)90778-1
    30 https://doi.org/10.1016/0378-1119(95)00858-6
    31 https://doi.org/10.1016/0958-1669(94)90068-x
    32 https://doi.org/10.1016/s0022-5193(76)80025-2
    33 https://doi.org/10.1073/pnas.67.1.128
    34 https://doi.org/10.1073/pnas.70.11.3240
    35 https://doi.org/10.1073/pnas.75.9.4242
    36 https://doi.org/10.1073/pnas.87.1.103
    37 https://doi.org/10.1073/pnas.89.18.8794
    38 https://doi.org/10.1073/pnas.91.8.3205
    39 https://doi.org/10.1073/pnas.94.26.14759
    40 https://doi.org/10.1073/pnas.94.4.1414
    41 https://doi.org/10.1073/pnas.95.5.2509
    42 https://doi.org/10.1073/pnas.95.9.5121
    43 https://doi.org/10.1074/jbc.273.20.12274
    44 https://doi.org/10.1093/nar/21.14.3329
    45 https://doi.org/10.1093/nar/21.15.3601
    46 https://doi.org/10.1093/nar/21.22.5192
    47 https://doi.org/10.1093/nar/24.15.3118
    48 https://doi.org/10.1093/nar/24.17.3469
    49 https://doi.org/10.1093/nar/24.21.4256
    50 https://doi.org/10.1093/nar/24.22.4594
    51 https://doi.org/10.1093/nar/26.6.1427
    52 https://doi.org/10.1101/sqb.1984.049.01.051
    53 https://doi.org/10.1111/j.1365-2958.1991.tb00791.x
    54 https://doi.org/10.1111/j.1365-2958.1994.tb00286.x
    55 https://doi.org/10.1126/science.2660262
    56 https://doi.org/10.1126/science.2999980
    57 https://doi.org/10.1128/jb.171.5.2609-2613.1989
    58 https://doi.org/10.1128/jb.171.9.4617-4622.1989
    59 https://doi.org/10.1128/jb.173.18.5808-5821.1991
    60 https://doi.org/10.1128/jb.175.1.277-287.1993
    61 https://doi.org/10.1128/jb.176.22.7024-7031.1994
    62 https://doi.org/10.1128/jb.179.20.6228-6237.1997
    63 schema:datePublished 1998-10
    64 schema:datePublishedReg 1998-10-01
    65 schema:description A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree false
    69 schema:isPartOf Nb46f72a27fdb432e8c0a8d7a23f10aba
    70 Nfb15fac9172d456d91c81908df495326
    71 sg:journal.1103138
    72 schema:name A new logic for DNA engineering using recombination in Escherichia coli
    73 schema:pagination 123-128
    74 schema:productId N1588df8517e54eed87cbe083043a6d78
    75 N780778eba193410fb96ace5b88cf8261
    76 Nb8c2cf625d9f463285054c9e331a4716
    77 Nd0c66fa9a3af495fba5f5ca8580af5c4
    78 Ne4c968dd0c0947389c82cc356d7ec653
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002783524
    80 https://doi.org/10.1038/2417
    81 schema:sdDatePublished 2019-04-11T12:10
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Neffed039884144efb62abf5dc6800704
    84 schema:url http://www.nature.com/ng/journal/v20/n2/full/ng1098_123.html
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N101a72480a23492cb714815a3bb1b6e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Point Mutation
    90 rdf:type schema:DefinedTerm
    91 N1588df8517e54eed87cbe083043a6d78 schema:name dimensions_id
    92 schema:value pub.1002783524
    93 rdf:type schema:PropertyValue
    94 N230bc058d5fd4191bb94cd6bd8bdb9a6 rdf:first sg:person.01210564370.12
    95 rdf:rest Ndb54466365984fd893cad249ed875a40
    96 N2b635c0951334cc7ba81296a28fae1f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Escherichia coli Proteins
    98 rdf:type schema:DefinedTerm
    99 N2f86fcd5a9f641938bee297f33328d02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name DNA-Binding Proteins
    101 rdf:type schema:DefinedTerm
    102 N521b1c46f74e484fab498663f79a869f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name DNA, Bacterial
    104 rdf:type schema:DefinedTerm
    105 N780778eba193410fb96ace5b88cf8261 schema:name readcube_id
    106 schema:value 0d4110f8b76db5e9247f4f4a94f26e3025239c2df4183f421e008a03cf4978c3
    107 rdf:type schema:PropertyValue
    108 N7dc9b527b551410eb1df726126eca20d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Escherichia coli
    110 rdf:type schema:DefinedTerm
    111 Nacef9e5c6c28421aa51920c3c03c7e17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Exodeoxyribonucleases
    113 rdf:type schema:DefinedTerm
    114 Nb3eb3be93d53474d8050c26408c24214 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Bacterial Proteins
    116 rdf:type schema:DefinedTerm
    117 Nb46f72a27fdb432e8c0a8d7a23f10aba schema:volumeNumber 20
    118 rdf:type schema:PublicationVolume
    119 Nb8c2cf625d9f463285054c9e331a4716 schema:name doi
    120 schema:value 10.1038/2417
    121 rdf:type schema:PropertyValue
    122 Nc5ddfd26d0bc4b9584349fff34aaee09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Recombination, Genetic
    124 rdf:type schema:DefinedTerm
    125 Ncd8e19e4968745528a7be89d86229e6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Plasmids
    127 rdf:type schema:DefinedTerm
    128 Nd0c66fa9a3af495fba5f5ca8580af5c4 schema:name pubmed_id
    129 schema:value 9771703
    130 rdf:type schema:PropertyValue
    131 Nd2e4e8bb54e44b3da521ef6dbd2b7aef rdf:first sg:person.01333645642.87
    132 rdf:rest N230bc058d5fd4191bb94cd6bd8bdb9a6
    133 Ndb54466365984fd893cad249ed875a40 rdf:first sg:person.01252051757.84
    134 rdf:rest rdf:nil
    135 Ne186e643405d4753b37ee3106a3b9f2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Genetic Engineering
    137 rdf:type schema:DefinedTerm
    138 Ne4c968dd0c0947389c82cc356d7ec653 schema:name nlm_unique_id
    139 schema:value 9216904
    140 rdf:type schema:PropertyValue
    141 Neffed039884144efb62abf5dc6800704 schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 Nf4137a19be8c4109ab77f1610592e281 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Polymerase Chain Reaction
    145 rdf:type schema:DefinedTerm
    146 Nf510816e601946458bfca3462fbc5b30 rdf:first sg:person.01160506447.47
    147 rdf:rest Nd2e4e8bb54e44b3da521ef6dbd2b7aef
    148 Nfb15fac9172d456d91c81908df495326 schema:issueNumber 2
    149 rdf:type schema:PublicationIssue
    150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Biological Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Genetics
    155 rdf:type schema:DefinedTerm
    156 sg:journal.1103138 schema:issn 1061-4036
    157 1546-1718
    158 schema:name Nature Genetics
    159 rdf:type schema:Periodical
    160 sg:person.01160506447.47 schema:affiliation https://www.grid.ac/institutes/grid.4709.a
    161 schema:familyName Zhang
    162 schema:givenName Y
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160506447.47
    164 rdf:type schema:Person
    165 sg:person.01210564370.12 schema:familyName Muyrers
    166 schema:givenName J P
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210564370.12
    168 rdf:type schema:Person
    169 sg:person.01252051757.84 schema:familyName Stewart
    170 schema:givenName A F
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252051757.84
    172 rdf:type schema:Person
    173 sg:person.01333645642.87 schema:familyName Buchholz
    174 schema:givenName F
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333645642.87
    176 rdf:type schema:Person
    177 sg:pub.10.1038/nbt0997-859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031958037
    178 https://doi.org/10.1038/nbt0997-859
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/ng0194-84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027542612
    181 https://doi.org/10.1038/ng0194-84
    182 rdf:type schema:CreativeWork
    183 https://app.dimensions.ai/details/publication/pub.1079465252 schema:CreativeWork
    184 https://app.dimensions.ai/details/publication/pub.1079492588 schema:CreativeWork
    185 https://app.dimensions.ai/details/publication/pub.1079661960 schema:CreativeWork
    186 https://app.dimensions.ai/details/publication/pub.1080476311 schema:CreativeWork
    187 https://app.dimensions.ai/details/publication/pub.1081559945 schema:CreativeWork
    188 https://app.dimensions.ai/details/publication/pub.1082903989 schema:CreativeWork
    189 https://app.dimensions.ai/details/publication/pub.1083068526 schema:CreativeWork
    190 https://app.dimensions.ai/details/publication/pub.1083248207 schema:CreativeWork
    191 https://doi.org/10.1016/0022-2836(92)90682-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048256565
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/0092-8674(83)90331-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016453858
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/0168-9525(93)90104-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1019985929
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0378-1119(92)90263-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1005129440
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/0378-1119(94)90778-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053097274
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/0378-1119(95)00858-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784514
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/0958-1669(94)90068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043653805
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/s0022-5193(76)80025-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007259661
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1073/pnas.67.1.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013912746
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1073/pnas.70.11.3240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041686183
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1073/pnas.75.9.4242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006403039
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1073/pnas.87.1.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047118258
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1073/pnas.89.18.8794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018026304
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1073/pnas.91.8.3205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045382979
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1073/pnas.94.26.14759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014770755
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1073/pnas.94.4.1414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028135533
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1073/pnas.95.5.2509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044133693
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1073/pnas.95.9.5121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040409096
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1074/jbc.273.20.12274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049279397
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/nar/21.14.3329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385012
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1093/nar/21.15.3601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037122693
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1093/nar/21.22.5192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007294193
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1093/nar/24.15.3118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050571566
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1093/nar/24.17.3469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013269537
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1093/nar/24.21.4256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011044668
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/nar/24.22.4594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025144584
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/nar/26.6.1427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022434247
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1101/sqb.1984.049.01.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060405599
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1111/j.1365-2958.1991.tb00791.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006429967
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1111/j.1365-2958.1994.tb00286.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041108644
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1126/science.2660262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549379
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1126/science.2999980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062580102
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1128/jb.171.5.2609-2613.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062717876
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1128/jb.171.9.4617-4622.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062718176
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1128/jb.173.18.5808-5821.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062719737
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1128/jb.175.1.277-287.1993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062721569
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1128/jb.176.22.7024-7031.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062723271
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1128/jb.179.20.6228-6237.1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062726351
    266 rdf:type schema:CreativeWork
    267 https://www.grid.ac/institutes/grid.4709.a schema:alternateName European Molecular Biology Laboratory
    268 schema:name Gene Expression Program, European Molecular Biology Laboratory, Heidelberg, Germany.
    269 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...