General: The Use of Correlational Analysis for Pattern Recognition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1972-08

AUTHORS

H. WEINBERG, R. COOPER

ABSTRACT

IN contrast to spectral analysis1, by which the presence of rhythmic activity can be detected but not defined in the time domain of a set of data, correlational analysis can be used to identify the exact time when a particular pattern, rhythmic or otherwise, occurs in the data2. This can be done by defining a set of data as a template and “scanning” the noisy data with this template, computing the cross-correlation coefficient (|r|) at each data point. A high value of the correlation coefficient implies that the noisy data are similar to the template. When searching for complex wave shapes this method can have serious limitations because there may be small but complex parts of the template that are important in the definition or recognition of the pattern but which may contribute little to the cross-correlation coefficient. More... »

PAGES

292-292

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/238292a0

DOI

http://dx.doi.org/10.1038/238292a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030399443


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Simon Fraser University, Vancouver, Canada", 
          "id": "http://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Simon Fraser University, Vancouver, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "WEINBERG", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Burden Neurological Institute, Bristol", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Burden Neurological Institute, Bristol"
          ], 
          "type": "Organization"
        }, 
        "familyName": "COOPER", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/203380a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017381577", 
          "https://doi.org/10.1038/203380a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1972-08", 
    "datePublishedReg": "1972-08-01", 
    "description": "IN contrast to spectral analysis1, by which the presence of rhythmic activity can be detected but not defined in the time domain of a set of data, correlational analysis can be used to identify the exact time when a particular pattern, rhythmic or otherwise, occurs in the data2. This can be done by defining a set of data as a template and \u201cscanning\u201d the noisy data with this template, computing the cross-correlation coefficient (|r|) at each data point. A high value of the correlation coefficient implies that the noisy data are similar to the template. When searching for complex wave shapes this method can have serious limitations because there may be small but complex parts of the template that are important in the definition or recognition of the pattern but which may contribute little to the cross-correlation coefficient.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/238292a0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5362", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "238"
      }
    ], 
    "keywords": [
      "noisy data", 
      "sets of data", 
      "pattern recognition", 
      "data points", 
      "recognition", 
      "cross-correlation coefficient", 
      "complex parts", 
      "set", 
      "serious limitations", 
      "exact time", 
      "template", 
      "time domain", 
      "data", 
      "particular pattern", 
      "domain", 
      "data2", 
      "limitations", 
      "definition", 
      "method", 
      "correlation coefficient", 
      "point", 
      "time", 
      "use", 
      "patterns", 
      "analysis", 
      "part", 
      "scanning", 
      "shape", 
      "coefficient", 
      "values", 
      "wave shape", 
      "contrast", 
      "activity", 
      "Analysis1", 
      "presence", 
      "higher values", 
      "rhythmic activity", 
      "correlational analysis"
    ], 
    "name": "General: The Use of Correlational Analysis for Pattern Recognition", 
    "pagination": "292-292", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030399443"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/238292a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/238292a0", 
      "https://app.dimensions.ai/details/publication/pub.1030399443"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_123.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/238292a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/238292a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/238292a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/238292a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/238292a0'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      64 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/238292a0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N343e5a176a28472496d8d34951291212
4 schema:citation sg:pub.10.1038/203380a0
5 schema:datePublished 1972-08
6 schema:datePublishedReg 1972-08-01
7 schema:description IN contrast to spectral analysis1, by which the presence of rhythmic activity can be detected but not defined in the time domain of a set of data, correlational analysis can be used to identify the exact time when a particular pattern, rhythmic or otherwise, occurs in the data2. This can be done by defining a set of data as a template and “scanning” the noisy data with this template, computing the cross-correlation coefficient (|r|) at each data point. A high value of the correlation coefficient implies that the noisy data are similar to the template. When searching for complex wave shapes this method can have serious limitations because there may be small but complex parts of the template that are important in the definition or recognition of the pattern but which may contribute little to the cross-correlation coefficient.
8 schema:genre article
9 schema:isAccessibleForFree true
10 schema:isPartOf Nd3664b09393546978aae71e763ea8614
11 Nee85f00515474fe09131eb5bc6ff3c35
12 sg:journal.1018957
13 schema:keywords Analysis1
14 activity
15 analysis
16 coefficient
17 complex parts
18 contrast
19 correlation coefficient
20 correlational analysis
21 cross-correlation coefficient
22 data
23 data points
24 data2
25 definition
26 domain
27 exact time
28 higher values
29 limitations
30 method
31 noisy data
32 part
33 particular pattern
34 pattern recognition
35 patterns
36 point
37 presence
38 recognition
39 rhythmic activity
40 scanning
41 serious limitations
42 set
43 sets of data
44 shape
45 template
46 time
47 time domain
48 use
49 values
50 wave shape
51 schema:name General: The Use of Correlational Analysis for Pattern Recognition
52 schema:pagination 292-292
53 schema:productId N557c9e531ccb4d9b9d609fc7b9e2c6f5
54 Nb5b6f7c77a524a57ad8aa322ac1b2a3f
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030399443
56 https://doi.org/10.1038/238292a0
57 schema:sdDatePublished 2022-12-01T06:17
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N3ece5c265ca24d97bae9a30ae32ede71
60 schema:url https://doi.org/10.1038/238292a0
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N1838c468bc214f1b842c46a16bf2e9b1 rdf:first N547711e8abcb4134a4490eb73a387e9e
65 rdf:rest rdf:nil
66 N343e5a176a28472496d8d34951291212 rdf:first N71f13a84ee6f44e3be8d18837eca7d5b
67 rdf:rest N1838c468bc214f1b842c46a16bf2e9b1
68 N3ece5c265ca24d97bae9a30ae32ede71 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N547711e8abcb4134a4490eb73a387e9e schema:affiliation grid-institutes:None
71 schema:familyName COOPER
72 schema:givenName R.
73 rdf:type schema:Person
74 N557c9e531ccb4d9b9d609fc7b9e2c6f5 schema:name doi
75 schema:value 10.1038/238292a0
76 rdf:type schema:PropertyValue
77 N71f13a84ee6f44e3be8d18837eca7d5b schema:affiliation grid-institutes:grid.61971.38
78 schema:familyName WEINBERG
79 schema:givenName H.
80 rdf:type schema:Person
81 Nb5b6f7c77a524a57ad8aa322ac1b2a3f schema:name dimensions_id
82 schema:value pub.1030399443
83 rdf:type schema:PropertyValue
84 Nd3664b09393546978aae71e763ea8614 schema:issueNumber 5362
85 rdf:type schema:PublicationIssue
86 Nee85f00515474fe09131eb5bc6ff3c35 schema:volumeNumber 238
87 rdf:type schema:PublicationVolume
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:journal.1018957 schema:issn 0028-0836
95 1476-4687
96 schema:name Nature
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:pub.10.1038/203380a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017381577
100 https://doi.org/10.1038/203380a0
101 rdf:type schema:CreativeWork
102 grid-institutes:None schema:alternateName Burden Neurological Institute, Bristol
103 schema:name Burden Neurological Institute, Bristol
104 rdf:type schema:Organization
105 grid-institutes:grid.61971.38 schema:alternateName Simon Fraser University, Vancouver, Canada
106 schema:name Simon Fraser University, Vancouver, Canada
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...