Spin gap and magnetic coherence in a clean high-temperature superconductor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-07

AUTHORS

B. Lake, G. Aeppli, T. E. Mason, A. Schröder, D. F. McMorrow, K. Lefmann, M. Isshiki, M. Nohara, H. Takagi, S. M. Hayden

ABSTRACT

A notable aspect of high-temperature superconductivity in the copper oxides is the unconventional nature of the underlying paired-electron state. A direct manifestation of the unconventional state is a pairing energy—that is, the energy required to remove one electron from the superconductor—that varies (between zero and a maximum value) as a function of momentum, or wavevector1,2: the pairing energy for conventional superconductors is wavevector-independent3,4. The wavefunction describing the superconducting state will include the pairing not only of charges, but also of the spins of the paired charges. Each pair is usually in the form of a spin singlet5, so there will also be a pairing energy associated with transforming the spin singlet into the higher-energy spin triplet form without necessarily unbinding the charges. Here we use inelastic neutron scattering to determine thewavevector-dependence of spin pairing in La2−xSrxCuO4, the simplest high-temperature superconductor. We find that the spin pairing energy (or ‘spin gap’) is wavevector independent, even though superconductivity significantly alters the wavevector dependence of the spin fluctuations at higher energies. More... »

PAGES

43

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/21840

DOI

http://dx.doi.org/10.1038/21840

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005323158


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "*Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada", 
            "\u2020Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA", 
            "\u2021Department of Condensed Matter Physics and Chemistry, Ris National Laboratory, 4000 Roskilde, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lake", 
        "givenName": "B.", 
        "id": "sg:person.0723550413.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723550413.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u2021Department of Condensed Matter Physics and Chemistry, Ris National Laboratory, 4000 Roskilde, Denmark", 
            "\u00a7NEC Research, 4 Independence Way, Princeton, New Jersey 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aeppli", 
        "givenName": "G.", 
        "id": "sg:person.01361207705.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361207705.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "*Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada", 
            "\u2020Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mason", 
        "givenName": "T. E.", 
        "id": "sg:person.011217247662.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011217247662.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "\u2016Department of Physics, University of Karlsruhe, D-76128 Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schr\u00f6der", 
        "givenName": "A.", 
        "id": "sg:person.011030436051.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030436051.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u2021Department of Condensed Matter Physics and Chemistry, Ris National Laboratory, 4000 Roskilde, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McMorrow", 
        "givenName": "D. F.", 
        "id": "sg:person.014341237247.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341237247.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u2021Department of Condensed Matter Physics and Chemistry, Ris National Laboratory, 4000 Roskilde, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lefmann", 
        "givenName": "K.", 
        "id": "sg:person.01154225413.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154225413.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u00a7NEC Research, 4 Independence Way, Princeton, New Jersey 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isshiki", 
        "givenName": "M.", 
        "id": "sg:person.010743427166.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743427166.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u00a7NEC Research, 4 Independence Way, Princeton, New Jersey 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nohara", 
        "givenName": "M.", 
        "id": "sg:person.011236446477.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236446477.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u00a7NEC Research, 4 Independence Way, Princeton, New Jersey 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takagi", 
        "givenName": "H.", 
        "id": "sg:person.013173521545.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173521545.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bristol", 
          "id": "https://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "#H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayden", 
        "givenName": "S. M.", 
        "id": "sg:person.011072504264.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072504264.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002828767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002828767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.r9678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006465235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.r9678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006465235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/26931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007786810", 
          "https://doi.org/10.1038/26931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/26931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007786810", 
          "https://doi.org/10.1038/26931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.6120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015806313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.6120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015806313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(97)00066-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025061315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p95-103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027111703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.1175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039060951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.1175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039060951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.12475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039163070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.12475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039163070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(94)91813-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040676129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(94)91813-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040676129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(96)01100-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044563130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.6554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.6554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.8190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.8190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.2345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.2345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.5744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.5744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.9124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.9124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.16078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.16078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.5889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.5889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.33.589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.33.589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.271.5247.329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.63.2739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063114521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/23/6/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229630"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-07", 
    "datePublishedReg": "1999-07-01", 
    "description": "A notable aspect of high-temperature superconductivity in the copper oxides is the unconventional nature of the underlying paired-electron state. A direct manifestation of the unconventional state is a pairing energy\u2014that is, the energy required to remove one electron from the superconductor\u2014that varies (between zero and a maximum value) as a function of momentum, or wavevector1,2: the pairing energy for conventional superconductors is wavevector-independent3,4. The wavefunction describing the superconducting state will include the pairing not only of charges, but also of the spins of the paired charges. Each pair is usually in the form of a spin singlet5, so there will also be a pairing energy associated with transforming the spin singlet into the higher-energy spin triplet form without necessarily unbinding the charges. Here we use inelastic neutron scattering to determine thewavevector-dependence of spin pairing in La2\u2212xSrxCuO4, the simplest high-temperature superconductor. We find that the spin pairing energy (or \u2018spin gap\u2019) is wavevector independent, even though superconductivity significantly alters the wavevector dependence of the spin fluctuations at higher energies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/21840", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6739", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "400"
      }
    ], 
    "name": "Spin gap and magnetic coherence in a clean high-temperature superconductor", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "195c83f58e324d03ecce61deb9fe14bee7c4fa34c7720d2377784b57bbba9add"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/21840"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005323158"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/21840", 
      "https://app.dimensions.ai/details/publication/pub.1005323158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/21840"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/21840'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/21840'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/21840'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/21840'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/21840 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N32109bd5566647698d14dc1c9e70e9c1
4 schema:citation sg:pub.10.1038/26931
5 https://doi.org/10.1016/0921-4526(94)91813-9
6 https://doi.org/10.1016/s0921-4526(96)01100-3
7 https://doi.org/10.1016/s0921-4526(97)00066-5
8 https://doi.org/10.1103/physrev.108.1175
9 https://doi.org/10.1103/physrevb.34.6554
10 https://doi.org/10.1103/physrevb.34.8190
11 https://doi.org/10.1103/physrevb.38.2345
12 https://doi.org/10.1103/physrevb.45.5744
13 https://doi.org/10.1103/physrevb.47.9124
14 https://doi.org/10.1103/physrevb.50.16078
15 https://doi.org/10.1103/physrevb.53.5889
16 https://doi.org/10.1103/physrevb.54.r9678
17 https://doi.org/10.1103/physrevb.56.6120
18 https://doi.org/10.1103/physrevb.60.12475
19 https://doi.org/10.1103/physrevlett.33.589
20 https://doi.org/10.1103/physrevlett.58.2802
21 https://doi.org/10.1103/physrevlett.61.2376
22 https://doi.org/10.1103/physrevlett.67.1791
23 https://doi.org/10.1103/physrevlett.68.1414
24 https://doi.org/10.1103/physrevlett.70.1553
25 https://doi.org/10.1103/physrevlett.71.919
26 https://doi.org/10.1103/physrevlett.73.3290
27 https://doi.org/10.1103/physrevlett.75.1626
28 https://doi.org/10.1103/physrevlett.77.1604
29 https://doi.org/10.1126/science.271.5247.329
30 https://doi.org/10.1139/p95-103
31 https://doi.org/10.1143/jpsj.63.2739
32 https://doi.org/10.1209/0295-5075/23/6/011
33 schema:datePublished 1999-07
34 schema:datePublishedReg 1999-07-01
35 schema:description A notable aspect of high-temperature superconductivity in the copper oxides is the unconventional nature of the underlying paired-electron state. A direct manifestation of the unconventional state is a pairing energy—that is, the energy required to remove one electron from the superconductor—that varies (between zero and a maximum value) as a function of momentum, or wavevector1,2: the pairing energy for conventional superconductors is wavevector-independent3,4. The wavefunction describing the superconducting state will include the pairing not only of charges, but also of the spins of the paired charges. Each pair is usually in the form of a spin singlet5, so there will also be a pairing energy associated with transforming the spin singlet into the higher-energy spin triplet form without necessarily unbinding the charges. Here we use inelastic neutron scattering to determine thewavevector-dependence of spin pairing in La2−xSrxCuO4, the simplest high-temperature superconductor. We find that the spin pairing energy (or ‘spin gap’) is wavevector independent, even though superconductivity significantly alters the wavevector dependence of the spin fluctuations at higher energies.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N8bc11b319e1b44fdbb7d7af6fd9f8e97
40 Nad8768c120264196a5a80686dc9a6f5c
41 sg:journal.1018957
42 schema:name Spin gap and magnetic coherence in a clean high-temperature superconductor
43 schema:pagination 43
44 schema:productId N233326683d834707807a4f4e1e94703f
45 N8c590eaf1fba49e78573df3508c34a6b
46 Ne99b1a5c1ce4422aa17f408cc539db86
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005323158
48 https://doi.org/10.1038/21840
49 schema:sdDatePublished 2019-04-11T12:23
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N1bc2563d3ad04cd397928ad567c898ef
52 schema:url https://www.nature.com/articles/21840
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1bc2563d3ad04cd397928ad567c898ef schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N233326683d834707807a4f4e1e94703f schema:name readcube_id
59 schema:value 195c83f58e324d03ecce61deb9fe14bee7c4fa34c7720d2377784b57bbba9add
60 rdf:type schema:PropertyValue
61 N250e6891f9564c7081bedff9cabdbcda rdf:first sg:person.011072504264.65
62 rdf:rest rdf:nil
63 N26d2fb45acc54e2ebe651e4e00dd3b17 rdf:first sg:person.010743427166.50
64 rdf:rest Ndb3097c695fc41fba5a33a49fcf3d8af
65 N32109bd5566647698d14dc1c9e70e9c1 rdf:first sg:person.0723550413.03
66 rdf:rest N692a2bf882d9475180481e07dec14eaf
67 N4d00dd691da642929e2f6b4987d20fe4 rdf:first sg:person.011217247662.33
68 rdf:rest N52536b85cbbc47c8b3baf57d816e5dcf
69 N52536b85cbbc47c8b3baf57d816e5dcf rdf:first sg:person.011030436051.39
70 rdf:rest N5c48a0ab8b124d88998c58b6787c5dfd
71 N5c48a0ab8b124d88998c58b6787c5dfd rdf:first sg:person.014341237247.66
72 rdf:rest Na488a4eb5e2a4f66ba51adf5881209d7
73 N692a2bf882d9475180481e07dec14eaf rdf:first sg:person.01361207705.15
74 rdf:rest N4d00dd691da642929e2f6b4987d20fe4
75 N6c82fb473e04406c942781742d814c4d schema:name §NEC Research, 4 Independence Way, Princeton, New Jersey 08540, USA
76 rdf:type schema:Organization
77 N8bc11b319e1b44fdbb7d7af6fd9f8e97 schema:issueNumber 6739
78 rdf:type schema:PublicationIssue
79 N8c590eaf1fba49e78573df3508c34a6b schema:name dimensions_id
80 schema:value pub.1005323158
81 rdf:type schema:PropertyValue
82 N8fa0df93167e4d70b9c36d1ca79e489e schema:name §NEC Research, 4 Independence Way, Princeton, New Jersey 08540, USA
83 rdf:type schema:Organization
84 Na488a4eb5e2a4f66ba51adf5881209d7 rdf:first sg:person.01154225413.89
85 rdf:rest N26d2fb45acc54e2ebe651e4e00dd3b17
86 Na77361f1717e4b02b9f04eb6575ac4cb schema:name §NEC Research, 4 Independence Way, Princeton, New Jersey 08540, USA
87 rdf:type schema:Organization
88 Nad8768c120264196a5a80686dc9a6f5c schema:volumeNumber 400
89 rdf:type schema:PublicationVolume
90 Nb994b41c846f4b68b8e598b4a197e7fe schema:name ‡Department of Condensed Matter Physics and Chemistry, Ris National Laboratory, 4000 Roskilde, Denmark
91 rdf:type schema:Organization
92 Ndb3097c695fc41fba5a33a49fcf3d8af rdf:first sg:person.011236446477.07
93 rdf:rest Ndfd391c73c3d4261a1b17f3d796d0dcf
94 Ndfd391c73c3d4261a1b17f3d796d0dcf rdf:first sg:person.013173521545.69
95 rdf:rest N250e6891f9564c7081bedff9cabdbcda
96 Ne260326a8029428794c9908bbf2feae1 schema:name ‡Department of Condensed Matter Physics and Chemistry, Ris National Laboratory, 4000 Roskilde, Denmark
97 rdf:type schema:Organization
98 Ne64538f4ee0644ba84915c289f66d5d9 schema:name §NEC Research, 4 Independence Way, Princeton, New Jersey 08540, USA
99 ‡Department of Condensed Matter Physics and Chemistry, Ris National Laboratory, 4000 Roskilde, Denmark
100 rdf:type schema:Organization
101 Ne99b1a5c1ce4422aa17f408cc539db86 schema:name doi
102 schema:value 10.1038/21840
103 rdf:type schema:PropertyValue
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:journal.1018957 schema:issn 0090-0028
111 1476-4687
112 schema:name Nature
113 rdf:type schema:Periodical
114 sg:person.010743427166.50 schema:affiliation N8fa0df93167e4d70b9c36d1ca79e489e
115 schema:familyName Isshiki
116 schema:givenName M.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743427166.50
118 rdf:type schema:Person
119 sg:person.011030436051.39 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
120 schema:familyName Schröder
121 schema:givenName A.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030436051.39
123 rdf:type schema:Person
124 sg:person.011072504264.65 schema:affiliation https://www.grid.ac/institutes/grid.5337.2
125 schema:familyName Hayden
126 schema:givenName S. M.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072504264.65
128 rdf:type schema:Person
129 sg:person.011217247662.33 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
130 schema:familyName Mason
131 schema:givenName T. E.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011217247662.33
133 rdf:type schema:Person
134 sg:person.011236446477.07 schema:affiliation Na77361f1717e4b02b9f04eb6575ac4cb
135 schema:familyName Nohara
136 schema:givenName M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236446477.07
138 rdf:type schema:Person
139 sg:person.01154225413.89 schema:affiliation Nb994b41c846f4b68b8e598b4a197e7fe
140 schema:familyName Lefmann
141 schema:givenName K.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154225413.89
143 rdf:type schema:Person
144 sg:person.013173521545.69 schema:affiliation N6c82fb473e04406c942781742d814c4d
145 schema:familyName Takagi
146 schema:givenName H.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173521545.69
148 rdf:type schema:Person
149 sg:person.01361207705.15 schema:affiliation Ne64538f4ee0644ba84915c289f66d5d9
150 schema:familyName Aeppli
151 schema:givenName G.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361207705.15
153 rdf:type schema:Person
154 sg:person.014341237247.66 schema:affiliation Ne260326a8029428794c9908bbf2feae1
155 schema:familyName McMorrow
156 schema:givenName D. F.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341237247.66
158 rdf:type schema:Person
159 sg:person.0723550413.03 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
160 schema:familyName Lake
161 schema:givenName B.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723550413.03
163 rdf:type schema:Person
164 sg:pub.10.1038/26931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007786810
165 https://doi.org/10.1038/26931
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/0921-4526(94)91813-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040676129
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0921-4526(96)01100-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044563130
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0921-4526(97)00066-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025061315
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrev.108.1175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039060951
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.34.6554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060541435
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.34.8190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060541696
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.38.2345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060547193
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.45.5744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561781
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.47.9124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566824
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevb.50.16078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573162
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.53.5889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060580435
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.54.r9678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006465235
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.56.6120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015806313
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.60.12475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039163070
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.33.589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060778690
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.58.2802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795214
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.61.2376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797910
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.67.1791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803198
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.68.1414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804143
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.70.1553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806463
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.71.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808408
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.73.3290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810044
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.75.1626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811606
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.77.1604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002828767
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.271.5247.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552023
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1139/p95-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027111703
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1143/jpsj.63.2739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063114521
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1209/0295-5075/23/6/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229630
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
224 schema:name *Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
225 †Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
226 ‡Department of Condensed Matter Physics and Chemistry, Ris National Laboratory, 4000 Roskilde, Denmark
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
229 schema:name #H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
232 schema:name ‖Department of Physics, University of Karlsruhe, D-76128 Karlsruhe, Germany
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...