The electronic structure at the atomic scale of ultrathin gate oxides View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-06

AUTHORS

D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, G. Timp

ABSTRACT

The narrowest feature on present-day integrated circuits is the gate oxide—the thin dielectric layer that forms the basis of field-effect device structures. Silicon dioxide is the dielectric of choice and, if present miniaturization trends continue, the projected oxide thickness by 2012 will be less than one nanometre, or about five silicon atoms across1. At least two of those five atoms will be at the silicon–oxide interfaces, and so will have very different electrical and optical properties from the desired bulk oxide, while constituting a significant fraction of the dielectric layer. Here we use electron-energy-loss spectroscopy in a scanning transmission electron microscope to measure the chemical composition and electronic structure, at the atomic scale, across gate oxides as thin as one nanometre. We are able to resolve the interfacial states that result from the spillover of the silicon conduction-band wavefunctions into the oxide. The spatial extent of these states places a fundamental limit of 0.7 nm (four silicon atoms across) on the thinnest usable silicon dioxide gate dielectric. And for present-day oxide growth techniques, interface roughness will raise this limit to 1.2 nm. More... »

PAGES

758

Journal

TITLE

Nature

ISSUE

6738

VOLUME

399

Author Affiliations

Related Patents

  • Methods Of Forming Electronic Devices Containing Zr-Sn-Ti-O Films
  • Low-Temperature Grown High Quality Ultra-Thin Cotio3 Gate Dielectrics
  • Atomic Layer Deposited Nanolaminates Of Hfo2/Zro2 Films As Gate Dielectrics
  • Lanthanide Doped Tiox Dielectric Films By Plasma Oxidation
  • Enhanced Atomic Layer Deposition
  • Silicon Oxide Based Gate Dielectric Layer
  • Highly Reliable Amorphous High-K Gate Dielectric Zroxny
  • Programmable Low Voltage Decode Circuits With Ultra-Thin Tunnel Oxides
  • Atomic Layer Deposited Nanolaminates Of Hfo2/Zro2 Films As Gate Dielectrics
  • Lanthanide Doped Tiox Dielectric Films
  • Deposition Of Zra1on Films
  • Tantalum Aluminum Oxynitride High-K Dielectric
  • Low Temperature P+ Silicon Junction Material For A Non-Volatile Memory Device
  • Zr-Sn-Ti-O Films
  • Methods For Atomic-Layer Deposition
  • Structures Containing Titanium Silicon Oxide
  • Dielectrics Containing At Least One Of A Refractory Metal Or A Non-Refractory Metal
  • Dielectrics Containing At Least One Of A Refractory Metal Or A Non-Refractory Metal
  • Resistive Ram With Preferental Filament Formation Region And Methods
  • Disturb-Resistant Non-Volatile Memory Device And Method
  • Lanthanide Doped Tiox Dielectric Films By Plasma Oxidation
  • Conductive Layers For Hafnium Silicon Oxynitride Films
  • Tantalum Lanthanide Oxynitride Films
  • Zr-Sn-Ti-O Films
  • Atomic Layer Deposition And Conversion
  • Structure And Method For Dual Gate Oxide Thicknesses
  • Tantalum Silicon Oxynitride High-K Dielectrics And Metal Gates
  • Coupled Heterogeneous Devices For Ph Sensing
  • Conductive Path In Switching Material In A Resistive Random Access Memory Device And Control
  • Zraion Films
  • Hafnium Tantalum Oxynitride Dielectric
  • P-Channel Dynamic Flash Memory Cells With Ultrathin Tunnel Oxides
  • Static Nvram With Ultra Thin Tunnel Oxides
  • Conductive Path In Switching Material In A Resistive Random Access Memory Device And Control
  • Memory Utilizing Oxide Nanolaminates
  • On/Off Ratio For Non-Volatile Memory Device And Method
  • Low-Temperature Grown High Quality Ultra-Thin Cotio3 Gate Dielectrics
  • Reduced Diffusion In Metal Electrode For Two-Terminal Memory
  • High Operating Speed Resistive Random Access Memory
  • Hafnium Lanthanide Oxynitride Films
  • Stackable Non-Volatile Resistive Switching Memory Devices
  • Highly Reliable Amorphous High-K Gate Dielectric Zroxny
  • Conductive Path In Switching Material In A Resistive Random Access Memory Device And Control
  • Structure And Method For Dual Gate Oxide Thicknesses
  • Gate Oxides, And Methods Of Forming
  • Silicon Oxide Based Gate Dielectric Layer
  • Write Once Read Only Memory Employing Floating Gates
  • High-K Dielectrics With Gold Nano-Particles
  • Zr— Sn—Ti—O Films
  • Resistive Random Access Memory With Non-Linear Current-Voltage Relationship
  • Zralon Films
  • Tantalum Silicon Oxynitride High-K Dielectrics And Metal Gates
  • Silver Interconnects For Stacked Non-Volatile Memory Device And Method
  • Three-Dimensional Oblique Two-Terminal Memory With Enhanced Electric Field
  • Evaporation Of Y-Si-O Films For Medium-K Dielectrics
  • Enhanced Atomic Layer Deposition
  • Guided Path For Forming A Conductive Filament In Rram
  • Tantalum Lanthanide Oxynitride Films
  • Hetero Resistive Switching Material Layer In Rram Device And Method
  • High-K Dielectrics With Gold Nano-Particles
  • P+ Polysilicon Material On Aluminum For Non-Volatile Memory Device And Method
  • Sub-Oxide Interface Layer For Two-Terminal Memory
  • Switching Device Having A Non-Linear Element
  • Write Once Read Only Memory Employing Floating Gates
  • Switching Device Having A Non-Linear Element
  • Resistive Random Access Memory Equalization And Sensing
  • Thin Film Transistor Steering Element For A Non-Volatile Memory Device
  • Atomic Layer Deposited Zr-Sn-Ti-O Films
  • P-Channel Dynamic Flash Memory Cells With Ultrathin Tunnel Oxides
  • Method For Silver Deposition For A Non-Volatile Memory Device
  • Dielectrics Containing At Least One Of A Refractory Metal Or A Non-Refractory Metal
  • Line And Space Architecture For A Non-Volatile Memory Device
  • Low-Temperature Grown High Quality Ultra-Thin Cotio3 Gate Dielectrics
  • Static Nvram With Ultra Thin Tunnel Oxides
  • Highly Reliable Amorphous High-K Gate Oxide Zro2
  • Atomic Layer Deposited Hfsion Dielectric Films Wherein Each Precursor Is Independendently Pulsed
  • Crystalline Or Amorphous Medium-K Gate Oxides, Y203 And Gd203
  • Method Including Forming Gate Dielectrics Having Multiple Lanthanide Oxide Layers
  • Systems With A Gate Dielectric Having Multiple Lanthanide Oxide Layers
  • Electrode Structure For A Non-Volatile Memory Device And Method
  • Resistive Memory Using Sige Material
  • Methods Of Forming Titanium Silicon Oxide
  • On/Off Ratio For Nonvolatile Memory Device And Method
  • Transistor With Reduced Depletion Field Width
  • Resistive Switching Device Structure With Improved Data Retention For Non-Volatile Memory Device And Method
  • Guided Path For Forming A Conductive Filament In Rram
  • Three-Dimensional Two-Terminal Memory With Enhanced Electric Field And Segmented Interconnects
  • Noble Metal / Non-Noble Metal Electrode For Rram Applications
  • Hafnium Tantalum Oxynitride Dielectric
  • Transistor With Reduced Depletion Field Width
  • Pillar Structure For Memory Device And Method
  • Conductive Layers For Hafnium Silicon Oxynitride
  • Selective Removal Method And Structure Of Silver In Resistive Switching Device For A Non-Volatile Memory Device
  • Filamentary Based Non-Volatile Resistive Memory Device And Method
  • Stackable Non-Volatile Resistive Switching Memory Device And Method Of Fabricating The Same
  • Three-Dimensional Two-Terminal Memory With Enhanced Electric Field And Segmented Interconnects
  • Structure And Method For Dual Gate Oxide Thicknesses
  • Non-Volatile Memory With Overwrite Capability And Low Write Amplification
  • Gallium Lanthanide Oxide Films
  • Atomic Layer Deposition Of A Ruthenium Layer To A Lanthanide Oxide Dielectric Layer
  • Atomic Layer Deposition Of A Ruthenium Layer To A Lanthanide Oxide Dielectric Layer
  • Noble Metal / Non-Noble Metal Electrode For Rram Applications
  • Atomic Layer-Deposited Laalo3 Films For Gate Dielectrics
  • Atomic Layer-Deposited Hafnium Aluminum Oxide
  • High-Quality Praseodymium Gate Dielectrics
  • Methods, Systems, And Apparatus For Uniform Chemical-Vapor Depositions
  • Evaporation Of Y-Si-O Films For Medium-K Dielectrics
  • Lanthanide Oxide / Hafnium Oxide Dielectric Layers
  • Enhanced Atomic Layer Deposition
  • Lanthanide Doped Tiox Dielectric Films
  • Atomic Layer Deposited Zr-Sn-Ti-O Films Using Tii4
  • Devices With Hfsion Dielectric Films Which Are Hf-O Rich
  • Memory Array Architecture With Two-Terminal Memory Cells
  • Low Temperature P+ Polycrystalline Silicon Material For Non-Volatile Memory Device
  • Interface Control For Improved Switching In Rram
  • Gallium Lathanide Oxide Films
  • Resistor Structure For A Non-Volatile Memory Device And Method
  • Low Voltage Pla's With Ultrathin Tunnel Oxides
  • Resistive Memory Device And Fabrication Methods
  • Methods For Fabricating Resistive Memory Device Switching Material Using Ion Implantation
  • Silicon Based Nanoscale Crossbar Memory
  • Monolithically Integrated Resistive Memory Using Integrated-Circuit Foundry Compatible Processes
  • Highly Reliable Amorphous High-K Gate Oxide Zro2
  • Tantalum Silicon Oxynitride High-K Dielectrics And Metal Gates
  • Interface Control For Improved Switching In Rram
  • Non-Volatile Memory With Overwrite Capability And Low Write Amplification
  • Low Temperature Fabrication Method For A Three-Dimensional Memory Device And Structure
  • Hafnium Lanthanide Oxynitride Films
  • Atomic Layer Deposition And Conversion
  • Device Switching Using Layered Device Structure
  • Dna Sequencing And Amplification Systems Using Nanoscale Field Effect Sensor Arrays
  • Resistive Memory Device And Fabrication Methods
  • Nanolaminates Of Hafnium Oxide And Zirconium Oxide
  • Disturb-Resistant Non-Volatile Memory Device Using Via-Fill And Etchback Technique
  • High-K Gate Dielectric Oxide
  • P-Channel Dynamic Flash Memory Cells With Ultrathin Tunnel Oxides
  • Atomic Layer Deposited Zr-Sn-Ti-O Films Using Tii4
  • Resistive Memory Using Sige Material
  • Write Once Read Only Memory Employing Floating Gates
  • Device Switching Using Layered Device Structure
  • Scalable Rram Device Architecture For A Non-Volatile Memory Device And Method
  • Hetero-Switching Layer In A Rram Device And Method
  • Gallium Lanthanide Oxide Films
  • Structure And Method For Dual Gate Oxide Thicknesses
  • Tantalum Aluminum Oxynitride High-Κ Dielectric
  • Atomic Layer Deposited Titanium Silicon Oxide Films
  • Conductive Layers For Hafnium Silicon Oxynitride Films
  • Disturb-Resistant Non-Volatile Memory Device Using Via-Fill And Etchback Technique
  • Resistor Structure For A Non-Volatile Memory Device And Method
  • Hafnium Tantalum Oxynitride High-K Dielectric And Metal Gates
  • Pillar Structure For Memory Device And Method
  • Method For Forming Stackable Non-Volatile Resistive Switching Memory Devices
  • Zra1on Films
  • Seed Layer For A P+ Silicon Germanium Material For A Non-Volatile Memory Device And Method
  • Lanthanide Doped Tiox Dielectric Films
  • Low-Temperature Growth High-Quality Ultra-Thin Praseodymium Gate Dieletrics
  • Static Nvram With Ultra Thin Tunnel Oxides
  • Method For Silver Deposition For A Non-Volatile Memory Device
  • Hafnium Tantalum Oxynitride Dielectric
  • Vertical Diodes For Non-Volatile Memory Device
  • Lanthanide Oxide / Hafnium Oxide Dielectric Layers
  • Two Terminal Resistive Switching Device Structure And Method Of Fabricating
  • Modeling Technique For Resistive Random Access Memory (Rram) Cells
  • Hetero-Switching Layer In A Rram Device And Method
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/21602

    DOI

    http://dx.doi.org/10.1038/21602

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021708578


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nokia (United States)", 
              "id": "https://www.grid.ac/institutes/grid.469490.6", 
              "name": [
                "Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Muller", 
            "givenName": "D. A.", 
            "id": "sg:person.0776327231.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776327231.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nokia (United States)", 
              "id": "https://www.grid.ac/institutes/grid.469490.6", 
              "name": [
                "Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sorsch", 
            "givenName": "T.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nokia (United States)", 
              "id": "https://www.grid.ac/institutes/grid.469490.6", 
              "name": [
                "Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moccio", 
            "givenName": "S.", 
            "id": "sg:person.015607261643.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015607261643.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nokia (United States)", 
              "id": "https://www.grid.ac/institutes/grid.469490.6", 
              "name": [
                "Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baumann", 
            "givenName": "F. H.", 
            "id": "sg:person.010403725673.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403725673.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nokia (United States)", 
              "id": "https://www.grid.ac/institutes/grid.469490.6", 
              "name": [
                "Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Evans-Lutterodt", 
            "givenName": "K.", 
            "id": "sg:person.015262663234.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015262663234.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nokia (United States)", 
              "id": "https://www.grid.ac/institutes/grid.469490.6", 
              "name": [
                "Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Timp", 
            "givenName": "G.", 
            "id": "sg:person.0641171553.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641171553.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4757-5099-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002687829", 
              "https://doi.org/10.1007/978-1-4757-5099-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-5099-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002687829", 
              "https://doi.org/10.1007/978-1-4757-5099-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3697(68)90216-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011238859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3697(68)90216-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011238859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/366725a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018950955", 
              "https://doi.org/10.1038/366725a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0920-2307(86)80001-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026072747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2818.1995.tb03690.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030243509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/366727a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039844146", 
              "https://doi.org/10.1038/366727a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786437208226818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047681199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/366143a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052171637", 
              "https://doi.org/10.1038/366143a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/366143a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052171637", 
              "https://doi.org/10.1038/366143a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3991(95)00029-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052750588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphys:01986004703049100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056991511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphyscol:19868129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057004174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2820276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057875375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.4331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060534427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.4331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060534427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.38.6084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060547772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.38.6084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060547772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.53.10942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060579270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.53.10942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060579270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.4744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060812374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.4744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060812374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.4741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.4741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.588840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062198886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511622564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098700868"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-06", 
        "datePublishedReg": "1999-06-01", 
        "description": "The narrowest feature on present-day integrated circuits is the gate oxide\u2014the thin dielectric layer that forms the basis of field-effect device structures. Silicon dioxide is the dielectric of choice and, if present miniaturization trends continue, the projected oxide thickness by 2012 will be less than one nanometre, or about five silicon atoms across1. At least two of those five atoms will be at the silicon\u2013oxide interfaces, and so will have very different electrical and optical properties from the desired bulk oxide, while constituting a significant fraction of the dielectric layer. Here we use electron-energy-loss spectroscopy in a scanning transmission electron microscope to measure the chemical composition and electronic structure, at the atomic scale, across gate oxides as thin as one nanometre. We are able to resolve the interfacial states that result from the spillover of the silicon conduction-band wavefunctions into the oxide. The spatial extent of these states places a fundamental limit of 0.7 nm (four silicon atoms across) on the thinnest usable silicon dioxide gate dielectric. And for present-day oxide growth techniques, interface roughness will raise this limit to 1.2 nm.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/21602", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6738", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "399"
          }
        ], 
        "name": "The electronic structure at the atomic scale of ultrathin gate oxides", 
        "pagination": "758", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "676dc8752ab153adda69453f23c4fc0b8e656490126d61f62028335c9aa4fe44"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/21602"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021708578"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/21602", 
          "https://app.dimensions.ai/details/publication/pub.1021708578"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/21602"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/21602'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/21602'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/21602'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/21602'


     

    This table displays all metadata directly associated to this object as RDF triples.

    159 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/21602 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N3a2c2b0f9eb445e08d07bc4c83223910
    4 schema:citation sg:pub.10.1007/978-1-4757-5099-7
    5 sg:pub.10.1038/366143a0
    6 sg:pub.10.1038/366725a0
    7 sg:pub.10.1038/366727a0
    8 https://doi.org/10.1016/0022-3697(68)90216-3
    9 https://doi.org/10.1016/0304-3991(95)00029-z
    10 https://doi.org/10.1016/s0920-2307(86)80001-9
    11 https://doi.org/10.1017/cbo9780511622564
    12 https://doi.org/10.1051/jphys:01986004703049100
    13 https://doi.org/10.1051/jphyscol:19868129
    14 https://doi.org/10.1063/1.2820276
    15 https://doi.org/10.1080/14786437208226818
    16 https://doi.org/10.1103/physrevb.29.4331
    17 https://doi.org/10.1103/physrevb.38.6084
    18 https://doi.org/10.1103/physrevb.53.10942
    19 https://doi.org/10.1103/physrevlett.59.213
    20 https://doi.org/10.1103/physrevlett.75.4744
    21 https://doi.org/10.1103/physrevlett.80.4741
    22 https://doi.org/10.1111/j.1365-2818.1995.tb03690.x
    23 https://doi.org/10.1116/1.588840
    24 schema:datePublished 1999-06
    25 schema:datePublishedReg 1999-06-01
    26 schema:description The narrowest feature on present-day integrated circuits is the gate oxide—the thin dielectric layer that forms the basis of field-effect device structures. Silicon dioxide is the dielectric of choice and, if present miniaturization trends continue, the projected oxide thickness by 2012 will be less than one nanometre, or about five silicon atoms across1. At least two of those five atoms will be at the silicon–oxide interfaces, and so will have very different electrical and optical properties from the desired bulk oxide, while constituting a significant fraction of the dielectric layer. Here we use electron-energy-loss spectroscopy in a scanning transmission electron microscope to measure the chemical composition and electronic structure, at the atomic scale, across gate oxides as thin as one nanometre. We are able to resolve the interfacial states that result from the spillover of the silicon conduction-band wavefunctions into the oxide. The spatial extent of these states places a fundamental limit of 0.7 nm (four silicon atoms across) on the thinnest usable silicon dioxide gate dielectric. And for present-day oxide growth techniques, interface roughness will raise this limit to 1.2 nm.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N4a93e09601d747a9ba07793246827402
    31 Nb4f40c58b15a4e3680d8377ef17752b8
    32 sg:journal.1018957
    33 schema:name The electronic structure at the atomic scale of ultrathin gate oxides
    34 schema:pagination 758
    35 schema:productId N1bd9ecff15da40bfbfd852a8d0adb15d
    36 N3557301670fa4eb89847b1ae6c04a04e
    37 Nb051b171393642d8a219f9c98931bc98
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021708578
    39 https://doi.org/10.1038/21602
    40 schema:sdDatePublished 2019-04-10T21:24
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N4f22a58b12eb4012949293f728650ee8
    43 schema:url https://www.nature.com/articles/21602
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N1bd9ecff15da40bfbfd852a8d0adb15d schema:name readcube_id
    48 schema:value 676dc8752ab153adda69453f23c4fc0b8e656490126d61f62028335c9aa4fe44
    49 rdf:type schema:PropertyValue
    50 N3557301670fa4eb89847b1ae6c04a04e schema:name dimensions_id
    51 schema:value pub.1021708578
    52 rdf:type schema:PropertyValue
    53 N3a2c2b0f9eb445e08d07bc4c83223910 rdf:first sg:person.0776327231.15
    54 rdf:rest N8757f550151b4e12a832cd7e19b321a3
    55 N4a93e09601d747a9ba07793246827402 schema:volumeNumber 399
    56 rdf:type schema:PublicationVolume
    57 N4f22a58b12eb4012949293f728650ee8 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N63e7420097cc4fc8a51b2544376c6437 rdf:first sg:person.010403725673.25
    60 rdf:rest N88af5f75c23c4453a9e81886f27c139a
    61 N8757f550151b4e12a832cd7e19b321a3 rdf:first Na4e67fe61d11447487cf88f64d5538b2
    62 rdf:rest Na444f2e28c764957bff8ecaf0995e039
    63 N88af5f75c23c4453a9e81886f27c139a rdf:first sg:person.015262663234.64
    64 rdf:rest Ndec14aae12554b00a9bde5c47ba3baf1
    65 Na444f2e28c764957bff8ecaf0995e039 rdf:first sg:person.015607261643.17
    66 rdf:rest N63e7420097cc4fc8a51b2544376c6437
    67 Na4e67fe61d11447487cf88f64d5538b2 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
    68 schema:familyName Sorsch
    69 schema:givenName T.
    70 rdf:type schema:Person
    71 Nb051b171393642d8a219f9c98931bc98 schema:name doi
    72 schema:value 10.1038/21602
    73 rdf:type schema:PropertyValue
    74 Nb4f40c58b15a4e3680d8377ef17752b8 schema:issueNumber 6738
    75 rdf:type schema:PublicationIssue
    76 Ndec14aae12554b00a9bde5c47ba3baf1 rdf:first sg:person.0641171553.41
    77 rdf:rest rdf:nil
    78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Engineering
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Materials Engineering
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1018957 schema:issn 0090-0028
    85 1476-4687
    86 schema:name Nature
    87 rdf:type schema:Periodical
    88 sg:person.010403725673.25 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
    89 schema:familyName Baumann
    90 schema:givenName F. H.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403725673.25
    92 rdf:type schema:Person
    93 sg:person.015262663234.64 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
    94 schema:familyName Evans-Lutterodt
    95 schema:givenName K.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015262663234.64
    97 rdf:type schema:Person
    98 sg:person.015607261643.17 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
    99 schema:familyName Moccio
    100 schema:givenName S.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015607261643.17
    102 rdf:type schema:Person
    103 sg:person.0641171553.41 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
    104 schema:familyName Timp
    105 schema:givenName G.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641171553.41
    107 rdf:type schema:Person
    108 sg:person.0776327231.15 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
    109 schema:familyName Muller
    110 schema:givenName D. A.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776327231.15
    112 rdf:type schema:Person
    113 sg:pub.10.1007/978-1-4757-5099-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002687829
    114 https://doi.org/10.1007/978-1-4757-5099-7
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1038/366143a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052171637
    117 https://doi.org/10.1038/366143a0
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1038/366725a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018950955
    120 https://doi.org/10.1038/366725a0
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1038/366727a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039844146
    123 https://doi.org/10.1038/366727a0
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0022-3697(68)90216-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011238859
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0304-3991(95)00029-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052750588
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/s0920-2307(86)80001-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026072747
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1017/cbo9780511622564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700868
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1051/jphys:01986004703049100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056991511
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1051/jphyscol:19868129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057004174
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1063/1.2820276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057875375
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1080/14786437208226818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047681199
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevb.29.4331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060534427
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevb.38.6084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060547772
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevb.53.10942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060579270
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevlett.59.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795842
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevlett.75.4744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812374
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevlett.80.4741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817544
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1111/j.1365-2818.1995.tb03690.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030243509
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1116/1.588840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062198886
    156 rdf:type schema:CreativeWork
    157 https://www.grid.ac/institutes/grid.469490.6 schema:alternateName Nokia (United States)
    158 schema:name Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
    159 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...