Understanding the valency of rare earths from first-principles theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-06

AUTHORS

P. Strange, A. Svane, W. M. Temmerman, Z. Szotek, H. Winter

ABSTRACT

The rare-earth metals have high magnetic moments and a diverse range of magnetic structures1. Their magnetic properties are determined by the occupancy of the strongly localized 4f electronic shells, while the outer s–d electrons determine the bonding and other electronic properties2. Most of the rare-earth atoms are divalent, but generally become trivalent in the metallic state. In some materials, the energy difference between these valence states is small and, by changing some external parameter (such as pressure), a transition from one to the other occurs. But the mechanism underlying this transition and the reason for the differing valence states are not well understood. Here we report first-principles electronic-structure calculations that enable us to determine both the valency and the lattice size as a function of atomic number, and hence understand the valence transitions. We find that there are two types of f electrons: localized core-like f electrons that determine the valency, and delocalized band-like f electrons that are formed through hybridization with the s–d bands and which participate in bonding. The latter are found only in the trivalent systems; if their number exceeds a certain threshold, it becomes energetically favourable for these electrons to localize, causing a transition to a divalent ground state. More... »

PAGES

756-758

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/21595

DOI

http://dx.doi.org/10.1038/21595

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022083164


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Keele University", 
          "id": "https://www.grid.ac/institutes/grid.9757.c", 
          "name": [
            "*Theoretical Physics Group, School of Chemistry and Physics, Keele University, Keele, Staffordshire ST5 5BG, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strange", 
        "givenName": "P.", 
        "id": "sg:person.01123306645.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123306645.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "\u2020Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Svane", 
        "givenName": "A.", 
        "id": "sg:person.01131602076.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131602076.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "\u2020Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Temmerman", 
        "givenName": "W. M.", 
        "id": "sg:person.015343736027.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343736027.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "\u2020Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szotek", 
        "givenName": "Z.", 
        "id": "sg:person.01176325102.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176325102.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "\u00a7INFP, Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winter", 
        "givenName": "H.", 
        "id": "sg:person.013607556034.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607556034.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0378-4363(86)90577-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001178065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4363(86)90577-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001178065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.20.1315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.20.1315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.8246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.8246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816364"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-06", 
    "datePublishedReg": "1999-06-01", 
    "description": "The rare-earth metals have high magnetic moments and a diverse range of magnetic structures1. Their magnetic properties are determined by the occupancy of the strongly localized 4f electronic shells, while the outer s\u2013d electrons determine the bonding and other electronic properties2. Most of the rare-earth atoms are divalent, but generally become trivalent in the metallic state. In some materials, the energy difference between these valence states is small and, by changing some external parameter (such as pressure), a transition from one to the other occurs. But the mechanism underlying this transition and the reason for the differing valence states are not well understood. Here we report first-principles electronic-structure calculations that enable us to determine both the valency and the lattice size as a function of atomic number, and hence understand the valence transitions. We find that there are two types of f electrons: localized core-like f electrons that determine the valency, and delocalized band-like f electrons that are formed through hybridization with the s\u2013d bands and which participate in bonding. The latter are found only in the trivalent systems; if their number exceeds a certain threshold, it becomes energetically favourable for these electrons to localize, causing a transition to a divalent ground state.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/21595", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6738", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "399"
      }
    ], 
    "name": "Understanding the valency of rare earths from first-principles theory", 
    "pagination": "756-758", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6935922812618617f9068c13b42591f0e67d2a76e52e9a4f4f0039774bff26e6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/21595"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022083164"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/21595", 
      "https://app.dimensions.ai/details/publication/pub.1022083164"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/21595"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/21595'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/21595'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/21595'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/21595'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/21595 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author N2aa9f1fc24d642da8bb49c3d96cc95c0
4 schema:citation https://doi.org/10.1016/0378-4363(86)90577-2
5 https://doi.org/10.1103/physrevb.20.1315
6 https://doi.org/10.1103/physrevb.32.8246
7 https://doi.org/10.1103/physrevlett.65.1148
8 https://doi.org/10.1103/physrevlett.79.4637
9 schema:datePublished 1999-06
10 schema:datePublishedReg 1999-06-01
11 schema:description The rare-earth metals have high magnetic moments and a diverse range of magnetic structures1. Their magnetic properties are determined by the occupancy of the strongly localized 4f electronic shells, while the outer s–d electrons determine the bonding and other electronic properties2. Most of the rare-earth atoms are divalent, but generally become trivalent in the metallic state. In some materials, the energy difference between these valence states is small and, by changing some external parameter (such as pressure), a transition from one to the other occurs. But the mechanism underlying this transition and the reason for the differing valence states are not well understood. Here we report first-principles electronic-structure calculations that enable us to determine both the valency and the lattice size as a function of atomic number, and hence understand the valence transitions. We find that there are two types of f electrons: localized core-like f electrons that determine the valency, and delocalized band-like f electrons that are formed through hybridization with the s–d bands and which participate in bonding. The latter are found only in the trivalent systems; if their number exceeds a certain threshold, it becomes energetically favourable for these electrons to localize, causing a transition to a divalent ground state.
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N56659da14d6d4c6f9ca5af4acef7c433
16 Ne5c27ca6bf5e4af6bd4bac9bf8ee02b9
17 sg:journal.1018957
18 schema:name Understanding the valency of rare earths from first-principles theory
19 schema:pagination 756-758
20 schema:productId N37bef33e82ea4ea0afacdee67ec3c4fd
21 N82b0726544e24c339195bfb813e95673
22 Nefb5077501c348b5979c7f8b34bdca03
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022083164
24 https://doi.org/10.1038/21595
25 schema:sdDatePublished 2019-04-10T15:38
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N0ef95630034142c1be5a8efd6076c972
28 schema:url http://www.nature.com/articles/21595
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N0ef95630034142c1be5a8efd6076c972 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N2aa9f1fc24d642da8bb49c3d96cc95c0 rdf:first sg:person.01123306645.00
35 rdf:rest Nbead0119543f45198d35b365c2669339
36 N37bef33e82ea4ea0afacdee67ec3c4fd schema:name doi
37 schema:value 10.1038/21595
38 rdf:type schema:PropertyValue
39 N53841ea9951a4d2d8acdf59ab6e4313d rdf:first sg:person.013607556034.59
40 rdf:rest rdf:nil
41 N56659da14d6d4c6f9ca5af4acef7c433 schema:issueNumber 6738
42 rdf:type schema:PublicationIssue
43 N82b0726544e24c339195bfb813e95673 schema:name readcube_id
44 schema:value 6935922812618617f9068c13b42591f0e67d2a76e52e9a4f4f0039774bff26e6
45 rdf:type schema:PropertyValue
46 Nabbe8e36fe7144b19c017daff9eaf463 rdf:first sg:person.015343736027.67
47 rdf:rest Nbfff0dacd11946beab329374069826ec
48 Nbead0119543f45198d35b365c2669339 rdf:first sg:person.01131602076.77
49 rdf:rest Nabbe8e36fe7144b19c017daff9eaf463
50 Nbfff0dacd11946beab329374069826ec rdf:first sg:person.01176325102.44
51 rdf:rest N53841ea9951a4d2d8acdf59ab6e4313d
52 Ne5c27ca6bf5e4af6bd4bac9bf8ee02b9 schema:volumeNumber 399
53 rdf:type schema:PublicationVolume
54 Nefb5077501c348b5979c7f8b34bdca03 schema:name dimensions_id
55 schema:value pub.1022083164
56 rdf:type schema:PropertyValue
57 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
58 schema:name Chemical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
61 schema:name Inorganic Chemistry
62 rdf:type schema:DefinedTerm
63 sg:journal.1018957 schema:issn 0090-0028
64 1476-4687
65 schema:name Nature
66 rdf:type schema:Periodical
67 sg:person.01123306645.00 schema:affiliation https://www.grid.ac/institutes/grid.9757.c
68 schema:familyName Strange
69 schema:givenName P.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123306645.00
71 rdf:type schema:Person
72 sg:person.01131602076.77 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
73 schema:familyName Svane
74 schema:givenName A.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131602076.77
76 rdf:type schema:Person
77 sg:person.01176325102.44 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
78 schema:familyName Szotek
79 schema:givenName Z.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176325102.44
81 rdf:type schema:Person
82 sg:person.013607556034.59 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
83 schema:familyName Winter
84 schema:givenName H.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607556034.59
86 rdf:type schema:Person
87 sg:person.015343736027.67 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
88 schema:familyName Temmerman
89 schema:givenName W. M.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343736027.67
91 rdf:type schema:Person
92 https://doi.org/10.1016/0378-4363(86)90577-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001178065
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevb.20.1315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060526292
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevb.32.8246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539067
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.65.1148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801078
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.79.4637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816364
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.482271.a schema:alternateName Daresbury Laboratory
103 schema:name †Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
106 schema:name †Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
107 rdf:type schema:Organization
108 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
109 schema:name §INFP, Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe, Germany
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.9757.c schema:alternateName Keele University
112 schema:name *Theoretical Physics Group, School of Chemistry and Physics, Keele University, Keele, Staffordshire ST5 5BG, UK
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...