Series Approximations to the Equation of Thermogravimetric Data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1965-07

AUTHORS

CHARLES D. DOYLE

ABSTRACT

THE equation of the plot of thermogravimetric data is useful in kinetic analysis (1–12), but since it contains an exponential integral, many workers prefer approximate expressions. The best balance of accuracy and convenience is achieved by the use of series taken to as few terms as possible, and it is the purpose of this communication to show which of four such abbreviated series approximations most nearly approaches this ideal. More... »

PAGES

290-291

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

4994

VOLUME

207

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/207290a0

DOI

http://dx.doi.org/10.1038/207290a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005846372


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "DOYLE", 
        "givenName": "CHARLES D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/macp.1964.020800119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017459098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/201068a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017774026", 
          "https://doi.org/10.1038/201068a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/v63-039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018323607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.1961.070051506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036037598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-196204000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043175959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-196204000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043175959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j150564a011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055694537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1965-07", 
    "datePublishedReg": "1965-07-01", 
    "description": "THE equation of the plot of thermogravimetric data is useful in kinetic analysis (1\u201312), but since it contains an exponential integral, many workers prefer approximate expressions. The best balance of accuracy and convenience is achieved by the use of series taken to as few terms as possible, and it is the purpose of this communication to show which of four such abbreviated series approximations most nearly approaches this ideal.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/207290a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4994", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "207"
      }
    ], 
    "name": "Series Approximations to the Equation of Thermogravimetric Data", 
    "pagination": "290-291", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1bda4f9ad2839219e5c80d701920c30d3787f4ce982da3b0b7e784a9f6886569"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/207290a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005846372"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/207290a0", 
      "https://app.dimensions.ai/details/publication/pub.1005846372"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/207290a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/207290a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/207290a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/207290a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/207290a0'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/207290a0 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author Ndaa76e57ee0641cd91f99f9933f6e25c
4 schema:citation sg:pub.10.1038/201068a0
5 https://doi.org/10.1002/app.1961.070051506
6 https://doi.org/10.1002/macp.1964.020800119
7 https://doi.org/10.1021/j150564a011
8 https://doi.org/10.1097/00010694-196204000-00001
9 https://doi.org/10.1139/v63-039
10 schema:datePublished 1965-07
11 schema:datePublishedReg 1965-07-01
12 schema:description THE equation of the plot of thermogravimetric data is useful in kinetic analysis (1–12), but since it contains an exponential integral, many workers prefer approximate expressions. The best balance of accuracy and convenience is achieved by the use of series taken to as few terms as possible, and it is the purpose of this communication to show which of four such abbreviated series approximations most nearly approaches this ideal.
13 schema:genre non_research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N2f562d0446b143939c1727ea39ba6418
17 N3893bd6f5bac4e1b9e1cf377b21e735f
18 sg:journal.1018957
19 schema:name Series Approximations to the Equation of Thermogravimetric Data
20 schema:pagination 290-291
21 schema:productId N9b6b119351164c7f8b3c00a97ea1bcc9
22 Na0e171c9d6f84accb8b8b9366c279fe2
23 Nd144bc645d3641dcb93bbf03ea1b5ee0
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005846372
25 https://doi.org/10.1038/207290a0
26 schema:sdDatePublished 2019-04-10T18:08
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N8fe24a96bc8e457e9c72a7e2b8198351
29 schema:url http://www.nature.com/articles/207290a0
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N2f562d0446b143939c1727ea39ba6418 schema:volumeNumber 207
34 rdf:type schema:PublicationVolume
35 N3893bd6f5bac4e1b9e1cf377b21e735f schema:issueNumber 4994
36 rdf:type schema:PublicationIssue
37 N8fe24a96bc8e457e9c72a7e2b8198351 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N9b6b119351164c7f8b3c00a97ea1bcc9 schema:name dimensions_id
40 schema:value pub.1005846372
41 rdf:type schema:PropertyValue
42 Na0e171c9d6f84accb8b8b9366c279fe2 schema:name doi
43 schema:value 10.1038/207290a0
44 rdf:type schema:PropertyValue
45 Nd144bc645d3641dcb93bbf03ea1b5ee0 schema:name readcube_id
46 schema:value 1bda4f9ad2839219e5c80d701920c30d3787f4ce982da3b0b7e784a9f6886569
47 rdf:type schema:PropertyValue
48 Nd307d56a977448cab0c51a94546d8e54 schema:familyName DOYLE
49 schema:givenName CHARLES D.
50 rdf:type schema:Person
51 Ndaa76e57ee0641cd91f99f9933f6e25c rdf:first Nd307d56a977448cab0c51a94546d8e54
52 rdf:rest rdf:nil
53 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
54 schema:name Economics
55 rdf:type schema:DefinedTerm
56 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
57 schema:name Econometrics
58 rdf:type schema:DefinedTerm
59 sg:journal.1018957 schema:issn 0090-0028
60 1476-4687
61 schema:name Nature
62 rdf:type schema:Periodical
63 sg:pub.10.1038/201068a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774026
64 https://doi.org/10.1038/201068a0
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1002/app.1961.070051506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036037598
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1002/macp.1964.020800119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017459098
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1021/j150564a011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055694537
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1097/00010694-196204000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043175959
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1139/v63-039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018323607
75 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...