Effects of ‘Visible’ Light on 5-Bromouracil-labelled DNA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1962-11

AUTHORS

A. WACKER, H. D. MENNIGMANN, WACLAW SZYBALSKI

ABSTRACT

INCORPORATION of 5-bromodeoxyuridine (BUdR) into the DNA of bacteriophages, bacteria and mammalian cells results in highly increased sensitivity not only to short-wave ultra-violet light1–4 but also, and even more profoundly, to ‘visible’ light2,4 or more probably to its long-wave ultra-violet component. An attempt was made to determine the photochemical mechanism of this phenomenon, as a logical extension of our earlier work on the mechanism of short-wave (2537 Å) ultra-violet light effects on BUdR-labelled cells and transforming DNA5. It was suspected that photochemical dehalogenation, a reaction already observed with short-wave ultra-violet light6, accounts for most of the lethal effects of ‘visible’ light, especially of the 3000–3600 Å component. The experiments were performed either with intact cells or with protein- and RNA-free DNA isolated from genetically transforming strains of Bacillus subtilis. In a few experiments, a thymine-requiring strain of Escherichia coli, 15 T−, was also used. The growth conditions resulting in massive incorporation of BUdR were described earlier7. 5-Bromouracil labelled with carbon-14 was used to label the cell DNA for the chromatographic experiments. A fluorescent lamp (General Electric, warm-white, 20 W) served as the source of ‘visible’ illumination. (Prolonged irradiation of frozen thymine solution with this lamp results in formation of small quantities of the thymine dimer, indicating that a minute fraction of its spectral output is a photochemically active ultra-violet component, which otherwise would scarcely be detectable by the usual spectrophotometric procedures.) More... »

PAGES

685-686

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/196685a0

DOI

http://dx.doi.org/10.1038/196685a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051057833

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/13998131


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bromouracil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultraviolet Rays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uracil", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "McArdle Memorial Laboratory, University of Wisconsin, 6, Madison", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "McArdle Memorial Laboratory, University of Wisconsin, 6, Madison"
          ], 
          "type": "Organization"
        }, 
        "familyName": "WACKER", 
        "givenName": "A.", 
        "id": "sg:person.0106734554.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0106734554.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McArdle Memorial Laboratory, University of Wisconsin, 6, Madison", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "McArdle Memorial Laboratory, University of Wisconsin, 6, Madison"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MENNIGMANN", 
        "givenName": "H. D.", 
        "id": "sg:person.061320500.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.061320500.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McArdle Memorial Laboratory, University of Wisconsin, 6, Madison", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "McArdle Memorial Laboratory, University of Wisconsin, 6, Madison"
          ], 
          "type": "Organization"
        }, 
        "familyName": "SZYBALSKI", 
        "givenName": "WACLAW", 
        "id": "sg:person.01060036204.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060036204.04"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1962-11", 
    "datePublishedReg": "1962-11-01", 
    "description": "INCORPORATION of 5-bromodeoxyuridine (BUdR) into the DNA of bacteriophages, bacteria and mammalian cells results in highly increased sensitivity not only to short-wave ultra-violet light1\u20134 but also, and even more profoundly, to \u2018visible\u2019 light2,4 or more probably to its long-wave ultra-violet component. An attempt was made to determine the photochemical mechanism of this phenomenon, as a logical extension of our earlier work on the mechanism of short-wave (2537 \u00c5) ultra-violet light effects on BUdR-labelled cells and transforming DNA5. It was suspected that photochemical dehalogenation, a reaction already observed with short-wave ultra-violet light6, accounts for most of the lethal effects of \u2018visible\u2019 light, especially of the 3000\u20133600 \u00c5 component. The experiments were performed either with intact cells or with protein- and RNA-free DNA isolated from genetically transforming strains of Bacillus subtilis. In a few experiments, a thymine-requiring strain of Escherichia coli, 15 T\u2212, was also used. The growth conditions resulting in massive incorporation of BUdR were described earlier7. 5-Bromouracil labelled with carbon-14 was used to label the cell DNA for the chromatographic experiments. A fluorescent lamp (General Electric, warm-white, 20 W) served as the source of \u2018visible\u2019 illumination. (Prolonged irradiation of frozen thymine solution with this lamp results in formation of small quantities of the thymine dimer, indicating that a minute fraction of its spectral output is a photochemically active ultra-violet component, which otherwise would scarcely be detectable by the usual spectrophotometric procedures.)", 
    "genre": "article", 
    "id": "sg:pub.10.1038/196685a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4855", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "196"
      }
    ], 
    "keywords": [
      "thymine-requiring strain", 
      "DNA of bacteriophage", 
      "mammalian cells", 
      "ultra-violet component", 
      "Bacillus subtilis", 
      "intact cells", 
      "Escherichia coli", 
      "DNA", 
      "cell DNA", 
      "growth conditions", 
      "lethal effects", 
      "cells", 
      "light effect", 
      "massive incorporation", 
      "subtilis", 
      "strains", 
      "bacteriophages", 
      "coli", 
      "protein", 
      "bacteria", 
      "mechanism", 
      "light1", 
      "components", 
      "incorporation", 
      "photochemical dehalogenation", 
      "light", 
      "dehalogenation", 
      "BUdR", 
      "experiments", 
      "effect", 
      "photochemical mechanisms", 
      "BUdR-labeled cells", 
      "logical extension", 
      "conditions", 
      "source", 
      "earlier work", 
      "sensitivity", 
      "fluorescent lamps", 
      "reaction", 
      "chromatographic experiments", 
      "illumination", 
      "phenomenon", 
      "attempt", 
      "extension", 
      "work", 
      "lamp", 
      "short-wave ultra-violet light1", 
      "ultra-violet light1", 
      "long-wave ultra-violet component", 
      "short-wave (2537 \u00c5) ultra-violet light effects", 
      "ultra-violet light effects", 
      "DNA5", 
      "short-wave ultra-violet light6", 
      "ultra-violet light6", 
      "light6", 
      "RNA-free DNA", 
      "earlier7"
    ], 
    "name": "Effects of \u2018Visible\u2019 Light on 5-Bromouracil-labelled DNA", 
    "pagination": "685-686", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051057833"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/196685a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "13998131"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/196685a0", 
      "https://app.dimensions.ai/details/publication/pub.1051057833"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_97.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/196685a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/196685a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/196685a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/196685a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/196685a0'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      20 PREDICATES      88 URIs      80 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/196685a0 schema:about N3ac2bcbba74049bea538a880ee4e44a4
2 N4bad38f2803b4d37a056b378652023fc
3 N84d3f3115617445da0bfb674b7808387
4 Nd5b492658b3642e39534f95e9a2c0aa2
5 Nd67796ae16554c1e9e107061e64b1b72
6 anzsrc-for:06
7 anzsrc-for:0601
8 schema:author N3d832e090f934494b0c18af754df2d65
9 schema:datePublished 1962-11
10 schema:datePublishedReg 1962-11-01
11 schema:description INCORPORATION of 5-bromodeoxyuridine (BUdR) into the DNA of bacteriophages, bacteria and mammalian cells results in highly increased sensitivity not only to short-wave ultra-violet light1–4 but also, and even more profoundly, to ‘visible’ light2,4 or more probably to its long-wave ultra-violet component. An attempt was made to determine the photochemical mechanism of this phenomenon, as a logical extension of our earlier work on the mechanism of short-wave (2537 Å) ultra-violet light effects on BUdR-labelled cells and transforming DNA5. It was suspected that photochemical dehalogenation, a reaction already observed with short-wave ultra-violet light6, accounts for most of the lethal effects of ‘visible’ light, especially of the 3000–3600 Å component. The experiments were performed either with intact cells or with protein- and RNA-free DNA isolated from genetically transforming strains of Bacillus subtilis. In a few experiments, a thymine-requiring strain of Escherichia coli, 15 T−, was also used. The growth conditions resulting in massive incorporation of BUdR were described earlier7. 5-Bromouracil labelled with carbon-14 was used to label the cell DNA for the chromatographic experiments. A fluorescent lamp (General Electric, warm-white, 20 W) served as the source of ‘visible’ illumination. (Prolonged irradiation of frozen thymine solution with this lamp results in formation of small quantities of the thymine dimer, indicating that a minute fraction of its spectral output is a photochemically active ultra-violet component, which otherwise would scarcely be detectable by the usual spectrophotometric procedures.)
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf Nbe61d5a624cb4698ba60de26b1224aed
15 Nebca61ef5a7049e98e029468564d5c61
16 sg:journal.1018957
17 schema:keywords BUdR
18 BUdR-labeled cells
19 Bacillus subtilis
20 DNA
21 DNA of bacteriophage
22 DNA5
23 Escherichia coli
24 RNA-free DNA
25 attempt
26 bacteria
27 bacteriophages
28 cell DNA
29 cells
30 chromatographic experiments
31 coli
32 components
33 conditions
34 dehalogenation
35 earlier work
36 earlier7
37 effect
38 experiments
39 extension
40 fluorescent lamps
41 growth conditions
42 illumination
43 incorporation
44 intact cells
45 lamp
46 lethal effects
47 light
48 light effect
49 light1
50 light6
51 logical extension
52 long-wave ultra-violet component
53 mammalian cells
54 massive incorporation
55 mechanism
56 phenomenon
57 photochemical dehalogenation
58 photochemical mechanisms
59 protein
60 reaction
61 sensitivity
62 short-wave (2537 Å) ultra-violet light effects
63 short-wave ultra-violet light1
64 short-wave ultra-violet light6
65 source
66 strains
67 subtilis
68 thymine-requiring strain
69 ultra-violet component
70 ultra-violet light effects
71 ultra-violet light1
72 ultra-violet light6
73 work
74 schema:name Effects of ‘Visible’ Light on 5-Bromouracil-labelled DNA
75 schema:pagination 685-686
76 schema:productId N5d989238f6984dcdb5315225e2a3425c
77 Nf141835a11ba4e33863f29d01390533d
78 Nf62065688e9d43669d54e179c3d8a651
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051057833
80 https://doi.org/10.1038/196685a0
81 schema:sdDatePublished 2021-12-01T19:53
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Nff352f55139143d0bef363d857207212
84 schema:url https://doi.org/10.1038/196685a0
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N3ac2bcbba74049bea538a880ee4e44a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Ultraviolet Rays
90 rdf:type schema:DefinedTerm
91 N3d832e090f934494b0c18af754df2d65 rdf:first sg:person.0106734554.30
92 rdf:rest N7abb4341d8b14bc8b15e8855b989642e
93 N4bad38f2803b4d37a056b378652023fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Bromouracil
95 rdf:type schema:DefinedTerm
96 N5d989238f6984dcdb5315225e2a3425c schema:name dimensions_id
97 schema:value pub.1051057833
98 rdf:type schema:PropertyValue
99 N7abb4341d8b14bc8b15e8855b989642e rdf:first sg:person.061320500.53
100 rdf:rest Na1f94a5c28b14eae9e3ade65bbe913be
101 N84d3f3115617445da0bfb674b7808387 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Light
103 rdf:type schema:DefinedTerm
104 Na1f94a5c28b14eae9e3ade65bbe913be rdf:first sg:person.01060036204.04
105 rdf:rest rdf:nil
106 Nbe61d5a624cb4698ba60de26b1224aed schema:issueNumber 4855
107 rdf:type schema:PublicationIssue
108 Nd5b492658b3642e39534f95e9a2c0aa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name DNA
110 rdf:type schema:DefinedTerm
111 Nd67796ae16554c1e9e107061e64b1b72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Uracil
113 rdf:type schema:DefinedTerm
114 Nebca61ef5a7049e98e029468564d5c61 schema:volumeNumber 196
115 rdf:type schema:PublicationVolume
116 Nf141835a11ba4e33863f29d01390533d schema:name pubmed_id
117 schema:value 13998131
118 rdf:type schema:PropertyValue
119 Nf62065688e9d43669d54e179c3d8a651 schema:name doi
120 schema:value 10.1038/196685a0
121 rdf:type schema:PropertyValue
122 Nff352f55139143d0bef363d857207212 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biological Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biochemistry and Cell Biology
129 rdf:type schema:DefinedTerm
130 sg:journal.1018957 schema:issn 0028-0836
131 1476-4687
132 schema:name Nature
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01060036204.04 schema:affiliation grid-institutes:grid.14003.36
136 schema:familyName SZYBALSKI
137 schema:givenName WACLAW
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060036204.04
139 rdf:type schema:Person
140 sg:person.0106734554.30 schema:affiliation grid-institutes:grid.14003.36
141 schema:familyName WACKER
142 schema:givenName A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0106734554.30
144 rdf:type schema:Person
145 sg:person.061320500.53 schema:affiliation grid-institutes:grid.14003.36
146 schema:familyName MENNIGMANN
147 schema:givenName H. D.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.061320500.53
149 rdf:type schema:Person
150 grid-institutes:grid.14003.36 schema:alternateName McArdle Memorial Laboratory, University of Wisconsin, 6, Madison
151 schema:name McArdle Memorial Laboratory, University of Wisconsin, 6, Madison
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...