Increased El Niño frequency in a climate model forced by future greenhouse warming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

A. Timmermann, J. Oberhuber, A. Bacher, M. Esch, M. Latif, E. Roeckner

ABSTRACT

The El Niño/Southern Oscillation (ENSO) phenomenon is the strongest natural interannual climate fluctuation1. ENSO originates in the tropical Pacific Ocean and has large effects on the ecology of the region, but it also influences the entire global climate system and affects the societies and economies of manycountries2. ENSO can be understood as an irregular low-frequency oscillation between a warm (El Niño) and a cold (La Niña) state. The strong El Niños of 1982/1983 and 1997/1998, along with the more frequent occurrences of El Niños during the past few decades, raise the question of whether human-induced ‘greenhouse’ warming affects, or will affect, ENSO3. Several global climate models have been applied to transient greenhouse-gas-induced warming simulations to address this question4,6, but the results have been debated owing to the inability of the models to fully simulate ENSO (because of their coarse equatorial resolution)7. Here we present results from a global climate model with sufficient resolution in the tropics to adequately represent the narrow equatorial upwelling and low-frequency waves. When the model is forced by a realistic future scenario of increasing greenhouse-gas concentrations, more frequent El-Niño-like conditions and stronger cold events in the tropical Pacific Ocean result. More... »

PAGES

694-697

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/19505

DOI

http://dx.doi.org/10.1038/19505

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028989532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut fr Meteorologie", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Planck-Institut fr Meteorologie"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timmermann", 
        "givenName": "A.", 
        "id": "sg:person.01112676014.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112676014.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum, Bundesstrasse 55, D-20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Bundesstrasse 55, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberhuber", 
        "givenName": "J.", 
        "id": "sg:person.016005715177.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005715177.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut fr Meteorologie", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Planck-Institut fr Meteorologie"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bacher", 
        "givenName": "A.", 
        "id": "sg:person.07727046271.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07727046271.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut fr Meteorologie", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Planck-Institut fr Meteorologie"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esch", 
        "givenName": "M.", 
        "id": "sg:person.014070022341.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070022341.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut fr Meteorologie", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Planck-Institut fr Meteorologie"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Latif", 
        "givenName": "M.", 
        "id": "sg:person.0763500255.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763500255.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut fr Meteorologie", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Planck-Institut fr Meteorologie"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roeckner", 
        "givenName": "E.", 
        "id": "sg:person.011102120341.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011102120341.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003820050140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007785039", 
          "https://doi.org/10.1007/s003820050140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019339291", 
          "https://doi.org/10.1038/382056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001589535", 
          "https://doi.org/10.1007/s003820050232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351027a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048642785", 
          "https://doi.org/10.1038/351027a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "The El Ni\u00f1o/Southern Oscillation (ENSO) phenomenon is the strongest natural interannual climate fluctuation1. ENSO originates in the tropical Pacific Ocean and has large effects on the ecology of the region, but it also influences the entire global climate system and affects the societies and economies of manycountries2. ENSO can be understood as an irregular low-frequency oscillation between a warm (El Ni\u00f1o) and a cold (La Ni\u00f1a) state. The strong El Ni\u00f1os of 1982/1983 and 1997/1998, along with the more frequent occurrences of El Ni\u00f1os during the past few decades, raise the question of whether human-induced \u2018greenhouse\u2019 warming affects, or will affect, ENSO3. Several global climate models have been applied to transient greenhouse-gas-induced warming simulations to address this question4,6, but the results have been debated owing to the inability of the models to fully simulate ENSO (because of their coarse equatorial resolution)7. Here we present results from a global climate model with sufficient resolution in the tropics to adequately represent the narrow equatorial upwelling and low-frequency waves. When the model is forced by a realistic future scenario of increasing greenhouse-gas concentrations, more frequent El-Ni\u00f1o-like conditions and stronger cold events in the tropical Pacific Ocean result.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/19505", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6729", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "398"
      }
    ], 
    "keywords": [
      "global climate models", 
      "climate models", 
      "El Ni\u00f1o", 
      "El Ni\u00f1o/Southern Oscillation (ENSO) phenomenon", 
      "tropical Pacific Ocean", 
      "El Ni\u00f1o frequency", 
      "future greenhouse warming", 
      "global climate system", 
      "strong El Ni\u00f1o", 
      "Southern Oscillation phenomenon", 
      "frequent El Ni\u00f1o", 
      "greenhouse gas concentrations", 
      "strong cold events", 
      "warming simulations", 
      "ocean results", 
      "greenhouse warming", 
      "climate system", 
      "cold events", 
      "low-frequency waves", 
      "Pacific Ocean", 
      "ENSO", 
      "realistic future scenarios", 
      "warming affects", 
      "future scenarios", 
      "oscillation phenomenon", 
      "Ni\u00f1o", 
      "cold state", 
      "sufficient resolution", 
      "frequent occurrence", 
      "like conditions", 
      "low-frequency oscillations", 
      "Ocean", 
      "warming", 
      "tropics", 
      "oscillations", 
      "large effect", 
      "events", 
      "occurrence", 
      "waves", 
      "model", 
      "region", 
      "resolution", 
      "scenarios", 
      "ecology", 
      "concentration", 
      "decades", 
      "simulations", 
      "results", 
      "conditions", 
      "greenhouse", 
      "phenomenon", 
      "frequency", 
      "system", 
      "state", 
      "effect", 
      "questions", 
      "inability", 
      "society", 
      "economy", 
      "affect"
    ], 
    "name": "Increased El Ni\u00f1o frequency in a climate model forced by future greenhouse warming", 
    "pagination": "694-697", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028989532"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/19505"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/19505", 
      "https://app.dimensions.ai/details/publication/pub.1028989532"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_337.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/19505"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/19505'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/19505'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/19505'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/19505'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      90 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/19505 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author Nbcbd8ea3082e46ab90699f66f501c0eb
5 schema:citation sg:pub.10.1007/s003820050140
6 sg:pub.10.1007/s003820050232
7 sg:pub.10.1038/351027a0
8 sg:pub.10.1038/382056a0
9 schema:datePublished 1999-04
10 schema:datePublishedReg 1999-04-01
11 schema:description The El Niño/Southern Oscillation (ENSO) phenomenon is the strongest natural interannual climate fluctuation1. ENSO originates in the tropical Pacific Ocean and has large effects on the ecology of the region, but it also influences the entire global climate system and affects the societies and economies of manycountries2. ENSO can be understood as an irregular low-frequency oscillation between a warm (El Niño) and a cold (La Niña) state. The strong El Niños of 1982/1983 and 1997/1998, along with the more frequent occurrences of El Niños during the past few decades, raise the question of whether human-induced ‘greenhouse’ warming affects, or will affect, ENSO3. Several global climate models have been applied to transient greenhouse-gas-induced warming simulations to address this question4,6, but the results have been debated owing to the inability of the models to fully simulate ENSO (because of their coarse equatorial resolution)7. Here we present results from a global climate model with sufficient resolution in the tropics to adequately represent the narrow equatorial upwelling and low-frequency waves. When the model is forced by a realistic future scenario of increasing greenhouse-gas concentrations, more frequent El-Niño-like conditions and stronger cold events in the tropical Pacific Ocean result.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf Nba16bb7d1371418987fd550dc72f5a2a
15 Ndc56ac3328534c4a9fced37aee6da9ec
16 sg:journal.1018957
17 schema:keywords ENSO
18 El Niño
19 El Niño frequency
20 El Niño/Southern Oscillation (ENSO) phenomenon
21 Niño
22 Ocean
23 Pacific Ocean
24 Southern Oscillation phenomenon
25 affect
26 climate models
27 climate system
28 cold events
29 cold state
30 concentration
31 conditions
32 decades
33 ecology
34 economy
35 effect
36 events
37 frequency
38 frequent El Niño
39 frequent occurrence
40 future greenhouse warming
41 future scenarios
42 global climate models
43 global climate system
44 greenhouse
45 greenhouse gas concentrations
46 greenhouse warming
47 inability
48 large effect
49 like conditions
50 low-frequency oscillations
51 low-frequency waves
52 model
53 occurrence
54 ocean results
55 oscillation phenomenon
56 oscillations
57 phenomenon
58 questions
59 realistic future scenarios
60 region
61 resolution
62 results
63 scenarios
64 simulations
65 society
66 state
67 strong El Niño
68 strong cold events
69 sufficient resolution
70 system
71 tropical Pacific Ocean
72 tropics
73 warming
74 warming affects
75 warming simulations
76 waves
77 schema:name Increased El Niño frequency in a climate model forced by future greenhouse warming
78 schema:pagination 694-697
79 schema:productId N5c86f7624c3640c0838d47a0f436f23c
80 N83902da0561f475b872bfe90544c7492
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028989532
82 https://doi.org/10.1038/19505
83 schema:sdDatePublished 2022-12-01T06:23
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Na9a76f6118ac4b4daf897d953cdc39a4
86 schema:url https://doi.org/10.1038/19505
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N0772535341a24bc78c3e39761fb2fadd rdf:first sg:person.014070022341.23
91 rdf:rest N1be0b18f8082474caba0556eb1a12c94
92 N13db3876eec8428cad89c6bbbfca5b22 rdf:first sg:person.016005715177.73
93 rdf:rest Nebf31aba84394c06a725c49a78d6053c
94 N1be0b18f8082474caba0556eb1a12c94 rdf:first sg:person.0763500255.33
95 rdf:rest N5799bd9b12b249389e95b382cbd4ef17
96 N5799bd9b12b249389e95b382cbd4ef17 rdf:first sg:person.011102120341.28
97 rdf:rest rdf:nil
98 N5c86f7624c3640c0838d47a0f436f23c schema:name doi
99 schema:value 10.1038/19505
100 rdf:type schema:PropertyValue
101 N83902da0561f475b872bfe90544c7492 schema:name dimensions_id
102 schema:value pub.1028989532
103 rdf:type schema:PropertyValue
104 Na9a76f6118ac4b4daf897d953cdc39a4 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nba16bb7d1371418987fd550dc72f5a2a schema:volumeNumber 398
107 rdf:type schema:PublicationVolume
108 Nbcbd8ea3082e46ab90699f66f501c0eb rdf:first sg:person.01112676014.57
109 rdf:rest N13db3876eec8428cad89c6bbbfca5b22
110 Ndc56ac3328534c4a9fced37aee6da9ec schema:issueNumber 6729
111 rdf:type schema:PublicationIssue
112 Nebf31aba84394c06a725c49a78d6053c rdf:first sg:person.07727046271.37
113 rdf:rest N0772535341a24bc78c3e39761fb2fadd
114 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
115 schema:name Earth Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
118 schema:name Atmospheric Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
121 schema:name Oceanography
122 rdf:type schema:DefinedTerm
123 sg:journal.1018957 schema:issn 0028-0836
124 1476-4687
125 schema:name Nature
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.011102120341.28 schema:affiliation grid-institutes:None
129 schema:familyName Roeckner
130 schema:givenName E.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011102120341.28
132 rdf:type schema:Person
133 sg:person.01112676014.57 schema:affiliation grid-institutes:None
134 schema:familyName Timmermann
135 schema:givenName A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112676014.57
137 rdf:type schema:Person
138 sg:person.014070022341.23 schema:affiliation grid-institutes:None
139 schema:familyName Esch
140 schema:givenName M.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070022341.23
142 rdf:type schema:Person
143 sg:person.016005715177.73 schema:affiliation grid-institutes:grid.424215.4
144 schema:familyName Oberhuber
145 schema:givenName J.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005715177.73
147 rdf:type schema:Person
148 sg:person.0763500255.33 schema:affiliation grid-institutes:None
149 schema:familyName Latif
150 schema:givenName M.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763500255.33
152 rdf:type schema:Person
153 sg:person.07727046271.37 schema:affiliation grid-institutes:None
154 schema:familyName Bacher
155 schema:givenName A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07727046271.37
157 rdf:type schema:Person
158 sg:pub.10.1007/s003820050140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007785039
159 https://doi.org/10.1007/s003820050140
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s003820050232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001589535
162 https://doi.org/10.1007/s003820050232
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/351027a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048642785
165 https://doi.org/10.1038/351027a0
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/382056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019339291
168 https://doi.org/10.1038/382056a0
169 rdf:type schema:CreativeWork
170 grid-institutes:None schema:alternateName Max-Planck-Institut fr Meteorologie
171 schema:name Max-Planck-Institut fr Meteorologie
172 rdf:type schema:Organization
173 grid-institutes:grid.424215.4 schema:alternateName Deutsches Klimarechenzentrum, Bundesstrasse 55, D-20146, Hamburg, Germany
174 schema:name Deutsches Klimarechenzentrum, Bundesstrasse 55, D-20146, Hamburg, Germany
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...