Electrical conduction through DNA molecules View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

Hans-Werner Fink, Christian Schönenberger

ABSTRACT

The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites. But the experimental results remain contradictory, as do theoretical predictions. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices. More... »

PAGES

407-410

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/18855

DOI

http://dx.doi.org/10.1038/18855

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012235147

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10201370


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Conductivity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron, Scanning", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Basel", 
          "id": "https://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fink", 
        "givenName": "Hans-Werner", 
        "id": "sg:person.0676101120.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676101120.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Basel", 
          "id": "https://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00f6nenberger", 
        "givenName": "Christian", 
        "id": "sg:person.01331747737.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331747737.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1074-5521(97)90230-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000826749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5305.1465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034157126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.118978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057683168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5274.475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5326.673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.14.002168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065158302"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites. But the experimental results remain contradictory, as do theoretical predictions. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/18855", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6726", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "398"
      }
    ], 
    "name": "Electrical conduction through DNA molecules", 
    "pagination": "407-410", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a4ab5d581a17149e6639320a4ae119820beb084ac948fbcdb22a0b8d90ac17e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10201370"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/18855"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012235147"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/18855", 
      "https://app.dimensions.ai/details/publication/pub.1012235147"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/18855"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/18855'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/18855'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/18855'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/18855'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      42 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/18855 schema:about N01f2eb5c83484aa7b0f8e22bde6c49a8
2 N0eb9908d38324ec988b714dd7bdefd50
3 N1a780961577a4373ab97c26cd0d1d683
4 N5626186f23be47c1ad5084473b3e3449
5 N8593bcbca91d405a9f8d80f81705fad9
6 Nc7a2e38edead4f83a2c06f5b3ee734f7
7 anzsrc-for:03
8 anzsrc-for:0306
9 schema:author N4fabf527cf9642698fd9e35076bf3723
10 schema:citation https://doi.org/10.1016/s1074-5521(97)90230-1
11 https://doi.org/10.1063/1.118978
12 https://doi.org/10.1103/physrevlett.65.1204
13 https://doi.org/10.1126/science.273.5274.475
14 https://doi.org/10.1126/science.275.5305.1465
15 https://doi.org/10.1126/science.277.5326.673
16 https://doi.org/10.1364/josaa.14.002168
17 schema:datePublished 1999-04
18 schema:datePublishedReg 1999-04-01
19 schema:description The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites. But the experimental results remain contradictory, as do theoretical predictions. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N30ca49cc3ea44260a167dfa843b279ec
24 N44155f21110d47c5b46fe21bed23eeb1
25 sg:journal.1018957
26 schema:name Electrical conduction through DNA molecules
27 schema:pagination 407-410
28 schema:productId N0bec2f39767e46dcb7749a4a15bf596e
29 N154d0bb6d62644dbad0d56276cc5ef54
30 N15a02186280a4d7484120fd77d057a50
31 N1f36aab1f03e424da979717b19b7d363
32 N9236837772fa42c4beac43e2fc120183
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012235147
34 https://doi.org/10.1038/18855
35 schema:sdDatePublished 2019-04-11T12:27
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N041da42b93054475ab9a77ced0be164b
38 schema:url http://www.nature.com/articles/18855
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N01f2eb5c83484aa7b0f8e22bde6c49a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
43 schema:name Electric Conductivity
44 rdf:type schema:DefinedTerm
45 N041da42b93054475ab9a77ced0be164b schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N0bec2f39767e46dcb7749a4a15bf596e schema:name doi
48 schema:value 10.1038/18855
49 rdf:type schema:PropertyValue
50 N0eb9908d38324ec988b714dd7bdefd50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Electrochemistry
52 rdf:type schema:DefinedTerm
53 N154d0bb6d62644dbad0d56276cc5ef54 schema:name pubmed_id
54 schema:value 10201370
55 rdf:type schema:PropertyValue
56 N15a02186280a4d7484120fd77d057a50 schema:name readcube_id
57 schema:value 3a4ab5d581a17149e6639320a4ae119820beb084ac948fbcdb22a0b8d90ac17e
58 rdf:type schema:PropertyValue
59 N1a780961577a4373ab97c26cd0d1d683 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Microscopy, Electron, Scanning
61 rdf:type schema:DefinedTerm
62 N1f36aab1f03e424da979717b19b7d363 schema:name dimensions_id
63 schema:value pub.1012235147
64 rdf:type schema:PropertyValue
65 N30ca49cc3ea44260a167dfa843b279ec schema:issueNumber 6726
66 rdf:type schema:PublicationIssue
67 N44155f21110d47c5b46fe21bed23eeb1 schema:volumeNumber 398
68 rdf:type schema:PublicationVolume
69 N4fabf527cf9642698fd9e35076bf3723 rdf:first sg:person.0676101120.80
70 rdf:rest Ne632eb2535c549a397c33807da4c2d28
71 N5626186f23be47c1ad5084473b3e3449 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Electrons
73 rdf:type schema:DefinedTerm
74 N8593bcbca91d405a9f8d80f81705fad9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Microscopy, Electron
76 rdf:type schema:DefinedTerm
77 N9236837772fa42c4beac43e2fc120183 schema:name nlm_unique_id
78 schema:value 0410462
79 rdf:type schema:PropertyValue
80 Nc7a2e38edead4f83a2c06f5b3ee734f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name DNA
82 rdf:type schema:DefinedTerm
83 Ne632eb2535c549a397c33807da4c2d28 rdf:first sg:person.01331747737.07
84 rdf:rest rdf:nil
85 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
86 schema:name Chemical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Chemistry (incl. Structural)
90 rdf:type schema:DefinedTerm
91 sg:journal.1018957 schema:issn 0090-0028
92 1476-4687
93 schema:name Nature
94 rdf:type schema:Periodical
95 sg:person.01331747737.07 schema:affiliation https://www.grid.ac/institutes/grid.6612.3
96 schema:familyName Schönenberger
97 schema:givenName Christian
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331747737.07
99 rdf:type schema:Person
100 sg:person.0676101120.80 schema:affiliation https://www.grid.ac/institutes/grid.6612.3
101 schema:familyName Fink
102 schema:givenName Hans-Werner
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676101120.80
104 rdf:type schema:Person
105 https://doi.org/10.1016/s1074-5521(97)90230-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000826749
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.118978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057683168
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.65.1204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801099
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1126/science.273.5274.475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553699
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1126/science.275.5305.1465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034157126
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1126/science.277.5326.673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557539
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1364/josaa.14.002168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065158302
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.6612.3 schema:alternateName University of Basel
120 schema:name Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...