Electrical conduction through DNA molecules View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

Hans-Werner Fink, Christian Schönenberger

ABSTRACT

The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites. But the experimental results remain contradictory, as do theoretical predictions. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices. More... »

PAGES

407-410

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/18855

DOI

http://dx.doi.org/10.1038/18855

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012235147

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10201370


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Conductivity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron, Scanning", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Basel", 
          "id": "https://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fink", 
        "givenName": "Hans-Werner", 
        "id": "sg:person.0676101120.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676101120.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Basel", 
          "id": "https://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00f6nenberger", 
        "givenName": "Christian", 
        "id": "sg:person.01331747737.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331747737.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1074-5521(97)90230-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000826749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5305.1465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034157126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.118978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057683168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5274.475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5326.673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.14.002168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065158302"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites. But the experimental results remain contradictory, as do theoretical predictions. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/18855", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6726", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "398"
      }
    ], 
    "name": "Electrical conduction through DNA molecules", 
    "pagination": "407-410", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a4ab5d581a17149e6639320a4ae119820beb084ac948fbcdb22a0b8d90ac17e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10201370"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/18855"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012235147"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/18855", 
      "https://app.dimensions.ai/details/publication/pub.1012235147"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/18855"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/18855'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/18855'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/18855'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/18855'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      42 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/18855 schema:about N4896d635c2ae464687a7d448ccef8c13
2 N56fe41e1986044839901c0e1abe26d49
3 N6506e58aea0642b9b2d005a690f374cf
4 N8a54e99cba6246ef93028a3049ceda84
5 Nce0e3b9bae894e1a9657beec8a1aca55
6 Nea1015e19fd14c949eae1c676ea955f4
7 anzsrc-for:03
8 anzsrc-for:0306
9 schema:author N2321da09383c4937863b964a0b37f883
10 schema:citation https://doi.org/10.1016/s1074-5521(97)90230-1
11 https://doi.org/10.1063/1.118978
12 https://doi.org/10.1103/physrevlett.65.1204
13 https://doi.org/10.1126/science.273.5274.475
14 https://doi.org/10.1126/science.275.5305.1465
15 https://doi.org/10.1126/science.277.5326.673
16 https://doi.org/10.1364/josaa.14.002168
17 schema:datePublished 1999-04
18 schema:datePublishedReg 1999-04-01
19 schema:description The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites. But the experimental results remain contradictory, as do theoretical predictions. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N4e1c515c43424af2b3ebc90b0508b72e
24 Nf29fd395dd2e413c91c3e00a9cc3a99f
25 sg:journal.1018957
26 schema:name Electrical conduction through DNA molecules
27 schema:pagination 407-410
28 schema:productId N0fc5f70cd3084ad084b594333a074344
29 N20c1e6aeb1674b1ea6e9a9c9c179d404
30 N21c590caa6994fbc91e8cd177066ea9e
31 Nb350d745b7094cd382091d50bfc9ad67
32 Ndc16567aa3b343ea8e9c6bf4a12fb090
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012235147
34 https://doi.org/10.1038/18855
35 schema:sdDatePublished 2019-04-11T12:27
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nd6029c7657bb4d039dc61ea0f8af5c61
38 schema:url http://www.nature.com/articles/18855
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0fc5f70cd3084ad084b594333a074344 schema:name readcube_id
43 schema:value 3a4ab5d581a17149e6639320a4ae119820beb084ac948fbcdb22a0b8d90ac17e
44 rdf:type schema:PropertyValue
45 N20c1e6aeb1674b1ea6e9a9c9c179d404 schema:name doi
46 schema:value 10.1038/18855
47 rdf:type schema:PropertyValue
48 N21c590caa6994fbc91e8cd177066ea9e schema:name dimensions_id
49 schema:value pub.1012235147
50 rdf:type schema:PropertyValue
51 N2321da09383c4937863b964a0b37f883 rdf:first sg:person.0676101120.80
52 rdf:rest N6fc532eb955249a7803425e1c687bac0
53 N4896d635c2ae464687a7d448ccef8c13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name DNA
55 rdf:type schema:DefinedTerm
56 N4e1c515c43424af2b3ebc90b0508b72e schema:volumeNumber 398
57 rdf:type schema:PublicationVolume
58 N56fe41e1986044839901c0e1abe26d49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Electric Conductivity
60 rdf:type schema:DefinedTerm
61 N6506e58aea0642b9b2d005a690f374cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Electrons
63 rdf:type schema:DefinedTerm
64 N6fc532eb955249a7803425e1c687bac0 rdf:first sg:person.01331747737.07
65 rdf:rest rdf:nil
66 N8a54e99cba6246ef93028a3049ceda84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Microscopy, Electron
68 rdf:type schema:DefinedTerm
69 Nb350d745b7094cd382091d50bfc9ad67 schema:name nlm_unique_id
70 schema:value 0410462
71 rdf:type schema:PropertyValue
72 Nce0e3b9bae894e1a9657beec8a1aca55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Microscopy, Electron, Scanning
74 rdf:type schema:DefinedTerm
75 Nd6029c7657bb4d039dc61ea0f8af5c61 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Ndc16567aa3b343ea8e9c6bf4a12fb090 schema:name pubmed_id
78 schema:value 10201370
79 rdf:type schema:PropertyValue
80 Nea1015e19fd14c949eae1c676ea955f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Electrochemistry
82 rdf:type schema:DefinedTerm
83 Nf29fd395dd2e413c91c3e00a9cc3a99f schema:issueNumber 6726
84 rdf:type schema:PublicationIssue
85 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
86 schema:name Chemical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Chemistry (incl. Structural)
90 rdf:type schema:DefinedTerm
91 sg:journal.1018957 schema:issn 0090-0028
92 1476-4687
93 schema:name Nature
94 rdf:type schema:Periodical
95 sg:person.01331747737.07 schema:affiliation https://www.grid.ac/institutes/grid.6612.3
96 schema:familyName Schönenberger
97 schema:givenName Christian
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331747737.07
99 rdf:type schema:Person
100 sg:person.0676101120.80 schema:affiliation https://www.grid.ac/institutes/grid.6612.3
101 schema:familyName Fink
102 schema:givenName Hans-Werner
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676101120.80
104 rdf:type schema:Person
105 https://doi.org/10.1016/s1074-5521(97)90230-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000826749
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.118978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057683168
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.65.1204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801099
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1126/science.273.5274.475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553699
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1126/science.275.5305.1465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034157126
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1126/science.277.5326.673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557539
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1364/josaa.14.002168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065158302
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.6612.3 schema:alternateName University of Basel
120 schema:name Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...