Ontology type: schema:ScholarlyArticle
1957-07
AUTHORS ABSTRACTTHE mechanism of the interconversion of fat and carbohydrate, known to occur in germinating fatty seedlings, has not yet been established. It has been shown that the castor bean can utilize acetate carbons in the synthesis of sucrose, and that the labelling of the sugar after incubation of bean extracts with sodium acetate-14C is consistent with the operations of glycolysis and the tricarboxylic acid cycle1. Yet these reactions are not by themselves sufficient to account for any net synthesis of carbohydrate from fat, but necessitate the occurrence of ancillary replacement reactions, whereby the intermediates drained from the cycle could be replaced directly by the breakdown of fatty acids. The ‘glyoxylate bypass’ of the tricarboxylic acid cycle demonstrated in acetate-grown Pseudomonas2 supplies such a replacement mechanism, which would also account for the observed labelling patterns. It was of interest, therefore, to investigate the possible occurrence of this by-pass in castor beans, particularly since malate is one of the earliest labelled products formed from labelled acetate in this tissue. More... »
PAGES35-36
http://scigraph.springernature.com/pub.10.1038/180035a0
DOIhttp://dx.doi.org/10.1038/180035a0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1010445224
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/13451633
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carbohydrate Metabolism",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carbohydrates",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Castor Bean",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Fats",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Lipid Metabolism",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Seeds",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Medical Research Council Cell Metabolism Research Unit, Department of Biochemistry, University of Oxford",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"Medical Research Council Cell Metabolism Research Unit, Department of Biochemistry, University of Oxford"
],
"type": "Organization"
},
"familyName": "KORNBERG",
"givenName": "H. L.",
"id": "sg:person.072763122.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.072763122.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Biological Sciences, Purdue University, Lafayette, Indiana",
"id": "http://www.grid.ac/institutes/grid.169077.e",
"name": [
"Department of Biological Sciences, Purdue University, Lafayette, Indiana"
],
"type": "Organization"
},
"familyName": "BEEVERS",
"givenName": "H.",
"id": "sg:person.061244465.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.061244465.57"
],
"type": "Person"
}
],
"datePublished": "1957-07",
"datePublishedReg": "1957-07-01",
"description": "THE mechanism of the interconversion of fat and carbohydrate, known to occur in germinating fatty seedlings, has not yet been established. It has been shown that the castor bean can utilize acetate carbons in the synthesis of sucrose, and that the labelling of the sugar after incubation of bean extracts with sodium acetate-14C is consistent with the operations of glycolysis and the tricarboxylic acid cycle1. Yet these reactions are not by themselves sufficient to account for any net synthesis of carbohydrate from fat, but necessitate the occurrence of ancillary replacement reactions, whereby the intermediates drained from the cycle could be replaced directly by the breakdown of fatty acids. The \u2018glyoxylate bypass\u2019 of the tricarboxylic acid cycle demonstrated in acetate-grown Pseudomonas2 supplies such a replacement mechanism, which would also account for the observed labelling patterns. It was of interest, therefore, to investigate the possible occurrence of this by-pass in castor beans, particularly since malate is one of the earliest labelled products formed from labelled acetate in this tissue.",
"genre": "article",
"id": "sg:pub.10.1038/180035a0",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4575",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "180"
}
],
"keywords": [
"acetate-14C",
"fat",
"bean extract",
"fatty acids",
"tricarboxylic acid cycle",
"labeling patterns",
"bypass",
"acid cycle",
"carbohydrates",
"observed labeling patterns",
"tissue",
"occurrence",
"possible occurrence",
"mechanism",
"glycolysis",
"net synthesis",
"incubation",
"extract",
"labeling",
"mechanism of conversion",
"acid",
"acetate carbon",
"cycle",
"castor bean",
"patterns",
"Cycle1",
"reaction",
"sugars",
"synthesis",
"sucrose",
"breakdown",
"malate",
"bean",
"pass",
"interest",
"supply",
"operation",
"products",
"conversion",
"glyoxylate bypass",
"replacement mechanism",
"intermediates",
"fatty seedlings",
"interconversion",
"synthesis of sucrose",
"seedlings",
"carbon",
"replacement reaction"
],
"name": "A Mechanism of Conversion of Fat to Carbohydrate in Castor Beans",
"pagination": "35-36",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1010445224"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/180035a0"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"13451633"
]
}
],
"sameAs": [
"https://doi.org/10.1038/180035a0",
"https://app.dimensions.ai/details/publication/pub.1010445224"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:16",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_68.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/180035a0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/180035a0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/180035a0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/180035a0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/180035a0'
This table displays all metadata directly associated to this object as RDF triples.
147 TRIPLES
20 PREDICATES
81 URIs
73 LITERALS
14 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/180035a0 | schema:about | N19d23b3449d246cd953dd3108458a579 |
2 | ″ | ″ | N1ce58dd0d2d74d2a9427f6537f6a5573 |
3 | ″ | ″ | N31b222414a60469284122c20f5c1f457 |
4 | ″ | ″ | N42e605cb2acf43aaaa3527260ecb3415 |
5 | ″ | ″ | N463e6f24084a49a0a2b268b2c4926bfc |
6 | ″ | ″ | Nd46273d75ae944eab19af1ceced0ec96 |
7 | ″ | ″ | Nf4658ef0caf74e01a9a828deae555697 |
8 | ″ | ″ | anzsrc-for:06 |
9 | ″ | ″ | anzsrc-for:0601 |
10 | ″ | schema:author | Nce22976e5e2e4495a9fabe598fa2ad85 |
11 | ″ | schema:datePublished | 1957-07 |
12 | ″ | schema:datePublishedReg | 1957-07-01 |
13 | ″ | schema:description | THE mechanism of the interconversion of fat and carbohydrate, known to occur in germinating fatty seedlings, has not yet been established. It has been shown that the castor bean can utilize acetate carbons in the synthesis of sucrose, and that the labelling of the sugar after incubation of bean extracts with sodium acetate-14C is consistent with the operations of glycolysis and the tricarboxylic acid cycle1. Yet these reactions are not by themselves sufficient to account for any net synthesis of carbohydrate from fat, but necessitate the occurrence of ancillary replacement reactions, whereby the intermediates drained from the cycle could be replaced directly by the breakdown of fatty acids. The ‘glyoxylate bypass’ of the tricarboxylic acid cycle demonstrated in acetate-grown Pseudomonas2 supplies such a replacement mechanism, which would also account for the observed labelling patterns. It was of interest, therefore, to investigate the possible occurrence of this by-pass in castor beans, particularly since malate is one of the earliest labelled products formed from labelled acetate in this tissue. |
14 | ″ | schema:genre | article |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N70f1f4bf86874e70b73a24f8e60f132a |
17 | ″ | ″ | Nfeca62c095944aeeb32c8863ad29d83c |
18 | ″ | ″ | sg:journal.1018957 |
19 | ″ | schema:keywords | Cycle1 |
20 | ″ | ″ | acetate carbon |
21 | ″ | ″ | acetate-14C |
22 | ″ | ″ | acid |
23 | ″ | ″ | acid cycle |
24 | ″ | ″ | bean |
25 | ″ | ″ | bean extract |
26 | ″ | ″ | breakdown |
27 | ″ | ″ | bypass |
28 | ″ | ″ | carbohydrates |
29 | ″ | ″ | carbon |
30 | ″ | ″ | castor bean |
31 | ″ | ″ | conversion |
32 | ″ | ″ | cycle |
33 | ″ | ″ | extract |
34 | ″ | ″ | fat |
35 | ″ | ″ | fatty acids |
36 | ″ | ″ | fatty seedlings |
37 | ″ | ″ | glycolysis |
38 | ″ | ″ | glyoxylate bypass |
39 | ″ | ″ | incubation |
40 | ″ | ″ | interconversion |
41 | ″ | ″ | interest |
42 | ″ | ″ | intermediates |
43 | ″ | ″ | labeling |
44 | ″ | ″ | labeling patterns |
45 | ″ | ″ | malate |
46 | ″ | ″ | mechanism |
47 | ″ | ″ | mechanism of conversion |
48 | ″ | ″ | net synthesis |
49 | ″ | ″ | observed labeling patterns |
50 | ″ | ″ | occurrence |
51 | ″ | ″ | operation |
52 | ″ | ″ | pass |
53 | ″ | ″ | patterns |
54 | ″ | ″ | possible occurrence |
55 | ″ | ″ | products |
56 | ″ | ″ | reaction |
57 | ″ | ″ | replacement mechanism |
58 | ″ | ″ | replacement reaction |
59 | ″ | ″ | seedlings |
60 | ″ | ″ | sucrose |
61 | ″ | ″ | sugars |
62 | ″ | ″ | supply |
63 | ″ | ″ | synthesis |
64 | ″ | ″ | synthesis of sucrose |
65 | ″ | ″ | tissue |
66 | ″ | ″ | tricarboxylic acid cycle |
67 | ″ | schema:name | A Mechanism of Conversion of Fat to Carbohydrate in Castor Beans |
68 | ″ | schema:pagination | 35-36 |
69 | ″ | schema:productId | N7f0d1b6f47664ce7a2df35b8408f337f |
70 | ″ | ″ | Na55ac9516fd8451085ae0606f6415569 |
71 | ″ | ″ | Nb9eac417e67349cb8e3039da66ebaf5f |
72 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010445224 |
73 | ″ | ″ | https://doi.org/10.1038/180035a0 |
74 | ″ | schema:sdDatePublished | 2022-06-01T22:16 |
75 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
76 | ″ | schema:sdPublisher | N5d96d6bd383947819dce7ab8231cfc76 |
77 | ″ | schema:url | https://doi.org/10.1038/180035a0 |
78 | ″ | sgo:license | sg:explorer/license/ |
79 | ″ | sgo:sdDataset | articles |
80 | ″ | rdf:type | schema:ScholarlyArticle |
81 | N19d23b3449d246cd953dd3108458a579 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
82 | ″ | schema:name | Carbohydrates |
83 | ″ | rdf:type | schema:DefinedTerm |
84 | N1ce58dd0d2d74d2a9427f6537f6a5573 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
85 | ″ | schema:name | Carbohydrate Metabolism |
86 | ″ | rdf:type | schema:DefinedTerm |
87 | N31b222414a60469284122c20f5c1f457 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
88 | ″ | schema:name | Humans |
89 | ″ | rdf:type | schema:DefinedTerm |
90 | N42e605cb2acf43aaaa3527260ecb3415 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
91 | ″ | schema:name | Seeds |
92 | ″ | rdf:type | schema:DefinedTerm |
93 | N463e6f24084a49a0a2b268b2c4926bfc | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
94 | ″ | schema:name | Castor Bean |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | N5d96d6bd383947819dce7ab8231cfc76 | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | N70f1f4bf86874e70b73a24f8e60f132a | schema:volumeNumber | 180 |
99 | ″ | rdf:type | schema:PublicationVolume |
100 | N7f0d1b6f47664ce7a2df35b8408f337f | schema:name | doi |
101 | ″ | schema:value | 10.1038/180035a0 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | N8962589848d04c5b95e0ab8683cff873 | rdf:first | sg:person.061244465.57 |
104 | ″ | rdf:rest | rdf:nil |
105 | Na55ac9516fd8451085ae0606f6415569 | schema:name | dimensions_id |
106 | ″ | schema:value | pub.1010445224 |
107 | ″ | rdf:type | schema:PropertyValue |
108 | Nb9eac417e67349cb8e3039da66ebaf5f | schema:name | pubmed_id |
109 | ″ | schema:value | 13451633 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | Nce22976e5e2e4495a9fabe598fa2ad85 | rdf:first | sg:person.072763122.02 |
112 | ″ | rdf:rest | N8962589848d04c5b95e0ab8683cff873 |
113 | Nd46273d75ae944eab19af1ceced0ec96 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
114 | ″ | schema:name | Lipid Metabolism |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | Nf4658ef0caf74e01a9a828deae555697 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
117 | ″ | schema:name | Fats |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | Nfeca62c095944aeeb32c8863ad29d83c | schema:issueNumber | 4575 |
120 | ″ | rdf:type | schema:PublicationIssue |
121 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Biological Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Biochemistry and Cell Biology |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | sg:journal.1018957 | schema:issn | 0028-0836 |
128 | ″ | ″ | 1476-4687 |
129 | ″ | schema:name | Nature |
130 | ″ | schema:publisher | Springer Nature |
131 | ″ | rdf:type | schema:Periodical |
132 | sg:person.061244465.57 | schema:affiliation | grid-institutes:grid.169077.e |
133 | ″ | schema:familyName | BEEVERS |
134 | ″ | schema:givenName | H. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.061244465.57 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.072763122.02 | schema:affiliation | grid-institutes:grid.4991.5 |
138 | ″ | schema:familyName | KORNBERG |
139 | ″ | schema:givenName | H. L. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.072763122.02 |
141 | ″ | rdf:type | schema:Person |
142 | grid-institutes:grid.169077.e | schema:alternateName | Department of Biological Sciences, Purdue University, Lafayette, Indiana |
143 | ″ | schema:name | Department of Biological Sciences, Purdue University, Lafayette, Indiana |
144 | ″ | rdf:type | schema:Organization |
145 | grid-institutes:grid.4991.5 | schema:alternateName | Medical Research Council Cell Metabolism Research Unit, Department of Biochemistry, University of Oxford |
146 | ″ | schema:name | Medical Research Council Cell Metabolism Research Unit, Department of Biochemistry, University of Oxford |
147 | ″ | rdf:type | schema:Organization |